Voronoi diagram of polygonal chains under the discrete Frechet distance

被引:0
|
作者
Bereg, Sergey [1 ]
Buchin, Kevin [2 ]
Buchin, Maike [2 ]
Gavrilova, Marina [3 ]
Zhu, Binhai [4 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75083 USA
[2] Free Univ Berlin, Inst Comp Sci, Berlin, Germany
[3] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada
[4] Montana State Univ, Dept Comp Sci, Bozeman, MT 59717 USA
来源
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Polygonal chains are fundamental objects in many applications like pattern recognition and protein structure alignment. A well-known measure to characterize the similarity of two polygonal chains is the (continuous/discrete) Frechet distance. In this paper, for the first time, we consider the Voronoi diagram of polygonal chains in d-dimension under the discrete Frechet distance. Given a set C of n polygonal chains in d-dimension, each with at most k vertices, we prove fundamental properties of such a Voronoi diagram VDF (C). Our main results are summarized as follows. The combinatorial complexity of VDF(C) is at most O(n(dk+epsilon)). The combinatorial complexity of VDF(C) is at least Omega(n(dk)) for dimension d = 1, 2; and Omega(n(d(k-l)+2)) for dimension d > 2.
引用
收藏
页码:352 / +
页数:3
相关论文
共 50 条
  • [1] VORONOI DIAGRAM OF POLYGONAL CHAINS UNDER THE DISCRETE FRECHET DISTANCE
    Bereg, Sergey
    Buchin, Kevin
    Buchin, Maike
    Gavrilova, Marina
    Zhu, Binhai
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2010, 20 (04) : 471 - 484
  • [2] Simplifying 3D polygonal chains under the discrete Frechet distance
    Bereg, Sergey
    Jiang, Minghui
    Wang, Wencheng
    Yang, Boting
    Zhu, Binhai
    LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 630 - +
  • [3] VARIANTS OF THE DISCRETE FRECHET DISTANCE UNDER TRANSLATION
    Filtser, Omrit
    Katz, Matthew J.
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2020, 11 (01) : 156 - 175
  • [4] Voronoi Diagram for Convex Polygonal Sites with Convex Polygon-Offset Distance Function
    Barequet, Gill
    De, Minati
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, 2017, 10156 : 24 - 36
  • [5] Universal approximate simplification under the discrete Frechet distance
    Filtser, Omrit
    INFORMATION PROCESSING LETTERS, 2018, 132 : 22 - 27
  • [6] Kinetic Voronoi Diagrams and Delaunay Triangulations under Polygonal Distance Functions
    Pankaj K. Agarwal
    Haim Kaplan
    Natan Rubin
    Micha Sharir
    Discrete & Computational Geometry, 2015, 54 : 871 - 904
  • [7] Kinetic Voronoi Diagrams and Delaunay Triangulations under Polygonal Distance Functions
    Agarwal, Pankaj K.
    Kaplan, Haim
    Rubin, Natan
    Sharir, Micha
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (04) : 871 - 904
  • [8] APPROXIMABILITY OF THE DISCRETE FRECHET DISTANCE
    Bringmann, Karl
    Mulzer, Wolfgang
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2016, 7 (02) : 46 - 76
  • [9] Protein Chain Pair Simplification under the Discrete Frechet Distance
    Wylie, Tim
    Zhu, Binhai
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (06) : 1372 - 1383
  • [10] Protein local structure alignment under the discrete Frechet distance
    Zhu, Binhai
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2007, 14 (10) : 1343 - 1351