Constitution and crystallization behaviour of ultrathin physical vapor deposited (PVD) Al2O3/SiO2 laminates

被引:6
|
作者
Schmücker, M [1 ]
Hoffbauer, W
Schneider, H
机构
[1] German Aerosp Ctr, Inst Mat Res, D-51170 Cologne, Germany
[2] Univ Bonn, Inst Inorgan Chem, D-53121 Bonn, Germany
关键词
Al2O3-SiO2; mullite;
D O I
10.1016/S0955-2219(01)00271-0
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ultrathin Al2O3/SiO2 multilayers were produced by physical vapor deposition (PVD) using a double source jumping beam PVD-coater. Al2O3/SiO2 multilayer formation is controlled by the electron beam jumping frequency yielding double-layer thicknesses of about 2, 5, 9, and 30 nm. The as-deposited Al2O3/SiO2, laminates are non-crystalline and display periodical contrast modulations in TEM cross-sections as long as the nominal thickness of the Al2O3/SiO2 double-layer is > 5 nm. EDX line scans and Si-29-MAS-NMR spectroscopy provide evidence of nanosized pure SiO2 and pure Al2O3 layers. XRD analyses show that films consisting of 30 nm thick Al2O3, and SiO2 layers at 1000 degreesC form transition alumina only. Transition alumina plus minor amounts of mullite appear at 1000 degreesC in alumino silicate coatings with intermediate Al2O3 and SiO2 layer thickness (5 and 9 nm), while only mullite occurs in samples with 2 nm thick compositional modulations. The crystallization of PVD-produced alumino silicate films with double layer thicknesses > 5 nm behaves similar to diphasic (type II) mullite precursors, while Al2O3/SiO2, double-layers 2 nm thick behave like single phase mullite precursors (type I). The latter is surprising because of the diphasic character of the double layers. Obviously, two conditions are required for mullite formation at 1000 degreesC: Interdiffusion-produced chemical homogeneization between Al2O3 and SiO2 layers, and formation of homogeneization zones large enough for mullite nucleation (about 2 to 5 nm in size). (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2503 / 2507
页数:5
相关论文
共 50 条
  • [31] Wetting characteristics of CaO−SiO2−Al2O3 ternary slag on refractory oxides, Al2O3, SiO2 and TiO2
    Sung-Mo Seo
    Dong-Sik Kim
    Young Hyun Paik
    Metals and Materials International, 2001, 7 : 479 - 483
  • [32] Ultrathin SiO2/Al2O3 passivation for silicon heterojunctions using rapid thermal annealing
    Kim, Sangpyeong
    Augusto, Andre
    Bowden, Stuart G.
    Honsbeg, Christiana B.
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 2104 - 2108
  • [33] Effect of Al2O3/SiO2 and CaO/Al2O3 ratios on wettability and structure of CaO–SiO2–Al2O3-based mold flux system
    Wan-lin Wang
    Er-zhuo Gao
    Le-jun Zhou
    Lei Zhang
    Huan Li
    Journal of Iron and Steel Research International, 2019, 26 : 355 - 364
  • [34] Structural characteristics and reactivity properties of highly dispersed Al2O3/SiO2 and V2O5/Al2O3/SiO2 catalysts
    Gao, XT
    Wachs, IE
    JOURNAL OF CATALYSIS, 2000, 192 (01) : 18 - 28
  • [35] SIO2 AND AL2O3 AS OXIDATION CATALYSTS OF METHANOL
    CAIRATI, L
    TRIFIRO, F
    JOURNAL OF CATALYSIS, 1983, 80 (01) : 25 - 30
  • [36] PHOTOLYSIS OF SUBSTITUTED NAPHTHALENES ON SIO2 AND AL2O3
    BARBAS, JT
    SIGMAN, ME
    BUCHANAN, AC
    CHEVIS, EA
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1993, 58 (02) : 155 - 158
  • [37] Thermoconversion of ethanol on Al2O3 and SiO2 oxides
    Mambetova, M. M.
    Yergaziyeva, G. E.
    Dossumov, K.
    CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY, 2022, 104 (01) : 22 - 29
  • [38] ULTRAVIOLET REFLECTANCE OF AL2O3, SIO2 AND BEO
    LOH, E
    SOLID STATE COMMUNICATIONS, 1964, 2 (09) : 269 - 272
  • [39] Energetics of native defects in Al2O3 and SiO2
    Yoshino, M
    Shinzato, Y
    Morinaga, M
    DESIGNING, PROCESSING AND PROPERTIES OF ADVANCED ENGINEERING MATERIALS, PTS 1 AND 2, 2004, 449-4 : 713 - 716
  • [40] IONIC AND ELECTRONIC TRANSPORT IN SIO2 AND AL2O3
    KROGER, FA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (03) : C128 - C128