Weak continuity and lower semicontinuity results for determinants

被引:22
|
作者
Fonseca, I [1 ]
Leoni, G
Maly, J
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Prague 18675 8, Czech Republic
关键词
D O I
10.1007/s00205-005-0377-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weak continuity properties of minors and lower semicontinuity properties of functionals with polyconvex integrands are addressed in this paper. In particular, it is shown that if {u(n)} is bounded in W-1,W- N - 1 (Omega; R-N), {adj del u(n)} subset of L n/N - 1 (Omega; R-N x N), and if u is an element of BV (Omega; R-N) are such that u(n) -> u in L-1 (Omega; R-N) and det del u(n) ->* mu in the sense of measures, then for L-N a.e. x is an element of Omega, det del u (x) = d mu/dL(N) (x). This result is sharp, and counterexamples are provided in the cases where the regularity of {u(n)} or the type of weak convergence is weakened.
引用
收藏
页码:411 / 448
页数:38
相关论文
共 50 条