Singularity Subtraction for Nearly Singular Integrals on Curvilinear Triangular Elements

被引:7
|
作者
Chen, Kun [1 ]
Song, Jiming [1 ]
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Nearly singular integrals; singularity cancellation; singularity subtraction; NUMERICAL EVALUATION; TRANSFORMATION;
D O I
10.1109/LAWP.2015.2411224
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter proposes a general singularity subtraction scheme to handle nearly singular 2-D integrals on curved triangular elements arising in high order method of moments (MoM) solution to surface integral equations. The approach works for kernels with various orders of singularity, and has very fast convergence. Comparisons are made between the proposed approach and the singularity cancellation schemes.
引用
收藏
页码:1435 / 1438
页数:4
相关论文
共 50 条
  • [21] Singular integrals and boundary elements
    Sladek, V
    Sladek, J
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 157 (3-4) : 251 - 266
  • [22] Evaluation of Hypersingular Integrals on Curvilinear Surface Elements
    Selcuk, Gokhun
    Koc, S. Sencer
    2016 10TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2016,
  • [23] The distance sinh transformation for the numerical evaluation of nearly singular integrals over curved surface elements
    Lv, Jiahe
    Miao, Yu
    Zhu, Hongping
    COMPUTATIONAL MECHANICS, 2014, 53 (02) : 359 - 367
  • [24] The distance sinh transformation for the numerical evaluation of nearly singular integrals over curved surface elements
    Jiahe Lv
    Yu Miao
    Hongping Zhu
    Computational Mechanics, 2014, 53 : 359 - 367
  • [25] VARIABLE ORDER COMPOSITE QUADRATURE OF SINGULAR AND NEARLY SINGULAR-INTEGRALS
    SCHWAB, C
    COMPUTING, 1994, 53 (02) : 173 - 194
  • [26] A Simple Method for Computing Singular or Nearly Singular Integrals on Closed Surfaces
    Beale, J. Thomas
    Ying, Wenjun
    Wilson, Jason R.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (03) : 733 - 753
  • [27] EVALUATION OF SINGULAR AND NEARLY SINGULAR INTEGRALS IN THE BEM WITH EXACT GEOMETRICAL REPRESENTATION
    Zhang, Yaoming
    Qu, Wenzhen
    Gu, Yan
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2013, 31 (04) : 355 - 369
  • [28] A new transformation technique for evaluating nearly singular integrals
    Ye, Wenjing
    COMPUTATIONAL MECHANICS, 2008, 42 (03) : 457 - 466
  • [29] A new transformation technique for evaluating nearly singular integrals
    Wenjing Ye
    Computational Mechanics, 2008, 42
  • [30] Cubature formulae for nearly singular and highly oscillating integrals
    Donatella Occorsio
    Giada Serafini
    Calcolo, 2018, 55