Improving Mortality Predictions for Patients With Mechanical Circulatory Support Using Follow-Up Data and Machine Learning

被引:4
|
作者
Jaeger, Byron C. [1 ]
Cantor, Ryan S. [1 ]
Sthanam, Venkata [1 ]
Rudraraju, Ramaraju [1 ]
机构
[1] Univ Alabama Birmingham, Kirklin Inst Res Surg Outcomes, 703 19th St S, Birmingham, AL 35233 USA
来源
CIRCULATION-GENOMIC AND PRECISION MEDICINE | 2020年 / 13卷 / 02期
关键词
health care; heart-assist devices; humans; machine learning; outcome assessment;
D O I
10.1161/CIRCGEN.119.002877
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
[No abstract available]
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Nephrology Follow-Up and Mortality of Critically Ill Patients with AKI
    Jeong, Rachel
    Clarke, Alix
    Ravani, Pietro
    Quinn, Robert R.
    James, Matthew T.
    Bagshaw, Sean M.
    Stelfox, Henry Thomas
    Harrison, Tyrone
    Pannu, Neesh I.
    Niven, Daniel
    Lam, Ngan
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 35 (10):
  • [42] Predicting atrial fibrillation within 7 years follow-up using machine learning models
    Tsarapatsani, K. H.
    Biros, D.
    Tsakanikas, V
    Sakellarios, A.
    Trampisch, H. J.
    Rudolf, H.
    Matsopoulos, G. K.
    Fotiadis, D., I
    EUROPEAN HEART JOURNAL, 2024, 45
  • [43] The mortality risk of psychiatric emergency patients - A follow-up study
    Palsson, SP
    Jonsdottir, G
    Petursson, H
    NORDIC JOURNAL OF PSYCHIATRY, 1996, 50 (03) : 207 - 216
  • [44] Evaluating a Telehealth Follow-up Program for Cardiology Patients Using Administrative Data
    Stewart, Samuel Alan
    Worth, Leslie
    Burton, Carolyn
    GLOBAL TELEHEALTH 2015: INTEGRATING TECHNOLOGY AND INFORMATION FOR BETTER HEALTHCARE, 2015, 209 : 156 - 161
  • [45] Improving 1-year mortality prediction in ACS patients using machine learning
    Weichwald, Sebastian
    Candreva, Alessandro
    Burkholz, Rebekka
    Klingenberg, Roland
    Raber, Lorenz
    Heg, Dik
    Manka, Robert
    Gencer, Baris
    Mach, Francois
    Nanchen, David
    Rodondi, Nicolas
    Windecker, Stephan
    Laaksonen, Reijo
    Hazen, Stanley L.
    von Eckardstein, Arnold
    Ruschitzka, Frank
    Luescher, Thomas F.
    Buhmann, Joachim M.
    Matter, Christian M.
    EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE, 2021, 10 (08) : 855 - 865
  • [46] Use of Machine Learning to Identify Follow-Up Recommendations in Radiology Reports
    Carrodeguas, Emmanuel
    Lacson, Ronilda
    Swanson, Whitney
    Khorasani, Ramin
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2019, 16 (03) : 336 - 343
  • [47] The use of machine learning for the prediction of response to follow-up in spine registries
    Baroncini, Alice
    Campagner, Andrea
    Cabitza, Federico
    Langella, Francesco
    Barile, Francesca
    Bellosta-Lopez, Pablo
    Compagnone, Domenico
    Cecchinato, Riccardo
    Damilano, Marco
    Redaelli, Andrea
    Vanni, Daniele
    Berjano, Pedro
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 195
  • [48] USE OF THE CANADIAN MORTALITY DATA-BASE FOR EPIDEMIOLOGICAL FOLLOW-UP
    SMITH, ME
    NEWCOMBE, HB
    CANADIAN JOURNAL OF PUBLIC HEALTH-REVUE CANADIENNE DE SANTE PUBLIQUE, 1982, 73 (01): : 39 - 42
  • [49] SOS - FOLLOW-UP SUPPORT TO BEGINNING LEARNING-DISABILITIES TEACHERS
    MORSINK, CV
    BLACKHURST, AE
    WILLIAMS, S
    JOURNAL OF LEARNING DISABILITIES, 1979, 12 (03) : 150 - 154