Prominence features: Effective emotional features for speech emotion recognition

被引:43
|
作者
Jing, Shaoling [1 ]
Mao, Xia [1 ]
Chen, Lijiang [1 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Prominence features; Speech annotation; Consistency assessment; Speech emotion recognition; FUNDAMENTAL-FREQUENCY; PERCEIVED PROMINENCE; AGREEMENT;
D O I
10.1016/j.dsp.2017.10.016
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Emotion-related feature extraction is a challenging task in speech emotion recognition. Due to the lack of discriminative acoustic features, classical approaches based on traditional acoustic features could not provide satisfactory performances. This research proposes a novel type of feature related to prominence, which, together with traditional acoustic features, are used to classify seven typical different emotional states. To this end, the author group produces a Chinese Dual-mode Emotional Speech Database (CDESD), which contains additional prominence and paralinguistic annotation information. Then, a consistency assessment algorithm is presented to validate the reliability of the annotation information of this database. The results show that the annotation consistency on prominence reaches more than 60% on average. Subsequently, this research analyzes the correlation of the prominence features with emotional states using a curve fitting method. Prominence is found to be closely related to emotion states, to retain emotional information at the word level to the greatest possible extent and to play an important role in emotional expression. Finally, the proposed prominence features are validated on CDESD through speaker dependent and speaker-independent experiments with four commonly used classifiers. The results show that the average recognition rate achieved using the combined features is improved by 6% in speaker dependent experiments and by 6.2% in speaker-independent experiments compared with that achieved using only acoustic features. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:216 / 231
页数:16
相关论文
共 50 条
  • [31] RECOGNITION OF EMOTION IN SPEECH USING VARIOGRAM BASED FEATURES
    Esmaileyan, Zeynab
    Marvi, Hosein
    MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2014, 27 (03) : 156 - 170
  • [32] Speech Emotion Recognition Using Local and Global Features
    Gao, Yuanbo
    Li, Baobin
    Wang, Ning
    Zhu, Tingshao
    BRAIN INFORMATICS, BI 2017, 2017, 10654 : 3 - 13
  • [33] Emotion recognition using novel speech signal features
    Tabatabaei, Talieh Seyed
    Krishnan, Sridhar
    Guergachi, Aziz
    2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 345 - +
  • [34] Analysis of Excitation Source Features of Speech for Emotion Recognition
    Kadiri, Sudarsana Reddy
    Gangamohan, P.
    Gangashetty, Suryakanth V.
    Yegnanarayana, B.
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1324 - 1328
  • [35] Evaluating intonational features for emotion recognition from speech
    Zervas, Panagiotis
    Mporas, Iosif
    Fakotakis, Nikos
    Kokkinakis, George
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2007, 16 (06) : 1001 - 1014
  • [36] Speech Emotion Recognition Using ANN on MFCC Features
    Dolka, Harshit
    Xavier, Arul V. M.
    Juliet, Sujitha
    ICSPC'21: 2021 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICPSC), 2021, : 431 - 435
  • [37] Deep temporal clustering features for speech emotion recognition
    Lin, Wei-Cheng
    Busso, Carlos
    SPEECH COMMUNICATION, 2024, 157
  • [38] Databases, features and classifiers for speech emotion recognition: a review
    Swain, Monorama
    Routray, Aurobinda
    Kabisatpathy, P.
    INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2018, 21 (01) : 93 - 120
  • [39] Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers
    Akcay, Mehmet Berkehan
    Oguz, Kaya
    SPEECH COMMUNICATION, 2020, 116 (116) : 56 - 76
  • [40] Informative Speech Features based on Emotion Classes and Gender in Explainable Speech Emotion Recognition
    Yildirim, Huseyin Ediz
    Iren, Deniz
    2023 11TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS, ACIIW, 2023,