Software cost estimation using artificial neural networks with inputs selection

被引:0
|
作者
Papatheocharous, Efi [1 ]
Andreou, Andreas S. [1 ]
机构
[1] Univ Cyprus, Dept Comp Sci, CY-1678 Nicosia, Cyprus
关键词
artificial neural networks; software cost estimation; input sensitivity analysis;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Software development is an intractable, multifaceted process encountering deep, inherent difficulties. Especially when trying to produce accurate and reliable software cost estimates, these difficulties are amplified due to the high level of complexity and uniqueness of the software process. This paper addresses the issue of estimating the cost of software development by identifying the need for countable entities that affect software cost and using them with artificial neural networks to establish a reliable estimation method. Input Sensitivity Analysis (ISA) is performed on predictive models of the Desharnais and ISBSG datasets aiming at identifying any correlation present between important cost parameters at the input level and development effort (output). The degree to which the input parameters define the evolution of effort is then investigated and the selected attributes are employed to establish accurate prediction of software cost in the early phases of the software development life-cycle.
引用
收藏
页码:398 / 407
页数:10
相关论文
共 50 条
  • [31] Probability density estimation using artificial neural networks
    Likas, A
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 135 (02) : 167 - 175
  • [32] Efficient estimation of osteoporosis using artificial neural networks
    Lemineur, Gerald
    Harba, Rachid
    Kilic, Niyazi
    Ucan, Osman N.
    Osman, Onur
    Benhamou, Laurent
    IECON 2007: 33RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, CONFERENCE PROCEEDINGS, 2007, : 3039 - +
  • [33] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [34] DIRECTION OF ARRIVAL ESTIMATION USING ARTIFICIAL NEURAL NETWORKS
    JHA, S
    DURRANI, T
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (05): : 1192 - 1201
  • [35] Estimation of daily evaporation using artificial neural networks
    Doǧan, Emrah
    Işik, Sabahattin
    Sandalci, Mehmet
    Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2007, 18 (02): : 4119 - 4131
  • [36] Solar radiation estimation using artificial neural networks
    Dorvlo, ASS
    Jervase, JA
    Al-Lawati, A
    APPLIED ENERGY, 2002, 71 (04) : 307 - 319
  • [37] Wireless User Estimation Using Artificial Neural Networks
    Abinoja, Daniel
    Bedruz, Rhen Anjerome
    Jovellanos, Kevin Loo
    Bandala, Argel
    2015 INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY,COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2015, : 475 - +
  • [38] Estimation of daily evaporation using Artificial Neural Networks
    Dogan, Emrah
    Isik, Sabahattin
    Sandalci, Mehmet
    TEKNIK DERGI, 2007, 18 (02): : 4119 - 4131
  • [39] Monthly Runoff Estimation Using Artificial Neural Networks
    Yazdani, M. R.
    Saghafian, B.
    Mahdian, M. H.
    Soltani, S.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2009, 11 (03): : 355 - 362
  • [40] Estimation of conditional quantiles using artificial neural networks
    Zhang, JT
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (06): : 569 - 574