A new approach to cartilage tissue engineering using human dermal fibroblasts seeded on three-dimensional polymer scaffolds.

被引:1
|
作者
Nicoll, SB [1 ]
Wedrychowska, A [1 ]
Smith, NR [1 ]
Bhatnagar, RS [1 ]
机构
[1] Univ Calif San Francisco, Lab Connect Tissue Biochem, San Francisco, CA 94143 USA
关键词
D O I
10.1557/PROC-530-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Current methods for correcting articular cartilage defects are limited by a scarcity of cartilage cells. Here we describe a novel method for the conversion of human dermal fibroblasts to chondrocyte-like cells and the potential application of this methodology to cartilage tissue engineering. Human neonatal foreskin fibroblasts were seeded on two-dimensional, tissue culture polystyrene (TCPS) in high density micromass cultures in the presence of staurosporine (50-200 nM), a protein kinase C (PKC) inhibitor, and lactic acid (40 mM) to induce functional hypoxia. Dermal fibroblasts were similarly cultured on three-dimensional polymer scaffolds composed of a non-woven polyglycolic acid (PGA) fiber mesh reinforced in a dilute solution of poly(l-lactic acid) (PLLA). At 24 hours, northern analysis revealed a staurosporine dose-dependent increase in aggrecan core protein expression in lactate-treated micromass cultures on TCPS, while type I collagen gene expression was virtually abolished in all cultures supplemented with staurosporine. The cells in these cultures displayed a rounded, cobblestone-shaped morphology typical of differentiated chondrocytes (most pronounced at 200 nM staurosporine and 40 mM lactate), and were organized into nodules which stained positively with Alcian blue. When seeded on PGA/PLLA matrices under identical conditions as described for TCPS, a chondrocyte-like morphology was observed in cultures treated with lactate and staurosporine in contrast to the flattened sheets of fibroblast-like cells seen in untreated controls. Taken together, the above findings suggest that staurosporine treatment coupled with high density micromass culture in the presence of lactate induces chondrogenic differentiation in human dermal fibroblasts, and that these cells may be used in concert with three-dimensional polymer scaffolds for the repair of articular cartilage lesions.
引用
收藏
页码:3 / 6
页数:4
相关论文
共 50 条
  • [41] Porous three-dimensional carbon nanotube scaffolds for tissue engineering
    Lalwani, Gaurav
    Gopalan, Anu
    D'Agati, Michael
    Sankaran, Jeyantt Srinivas
    Judex, Stefan
    Qin, Yi-Xian
    Sitharaman, Balaji
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2015, 103 (10) : 3212 - 3225
  • [42] A Novel Three-dimensional Composite Scaffold for Cartilage Tissue Engineering
    Wu Chun-chen
    Wu Jing-lei
    Li Jun
    Yin An-lin
    Mo Xiu-mei
    Zhou Yan
    2011 INTERNATIONAL FORUM ON BIOMEDICAL TEXTILE MATERIALS, PROCEEDINGS, 2011, : 316 - 320
  • [43] Effect of strain on human dermal fibroblasts in a three-dimensional collagen sponge
    Masao Hara
    Takahiro Fujii
    Ron Hashizume
    Yoshihiro Nomura
    Cytotechnology, 2014, 66 : 723 - 728
  • [44] Effect of strain on human dermal fibroblasts in a three-dimensional collagen sponge
    Hara, Masao
    Fujii, Takahiro
    Hashizume, Ron
    Nomura, Yoshihiro
    CYTOTECHNOLOGY, 2014, 66 (05) : 723 - 728
  • [45] Chondroinduction of human dermal fibroblasts by demineralized bone in three-dimensional culture
    Mizuno, S
    Glowacki, J
    EXPERIMENTAL CELL RESEARCH, 1996, 227 (01) : 89 - 97
  • [46] Human Cartilage Tissue Fabrication Using Three-dimensional Inkjet Printing Technology
    Cui, Xiaofeng
    Gao, Guifang
    Yonezawa, Tomo
    Dai, Guohao
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (88):
  • [47] Two- and three-dimensional piezoelectric scaffolds for bone tissue engineering
    Silva, Claudia A.
    Fernandes, Margarida M.
    Ribeiro, Clarisse
    Lanceros-Mendez, Senentxu
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2022, 218
  • [48] Fabrication and Characterization of Three-Dimensional Electrospun Scaffolds for Bone Tissue Engineering
    Andric T.
    Taylor B.L.
    Whittington A.R.
    Freeman J.W.
    Regenerative Engineering and Translational Medicine, 2015, 1 (1-4) : 32 - 41
  • [49] Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering
    Fan, Changjiang
    Wang, Dong-An
    TISSUE ENGINEERING PART B-REVIEWS, 2017, 23 (05) : 451 - 461
  • [50] A Modular Three-Dimensional Bioprinter for Printing Porous Scaffolds for Tissue Engineering
    Warburton, Linnea
    Lou, Leo
    Rubinsky, Boris
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2022, 144 (03):