An Attack Detection Framework Based on BERT and Deep Learning

被引:16
|
作者
Seyyar, Yunus Emre [1 ]
Yavuz, Ali Gokhan [2 ]
Unver, Halil Murat [1 ]
机构
[1] Kirikkale Univ, Grad Sch Nat & Appl Sci, Dept Comp Engn, TR-71451 Kirikkale, Turkey
[2] Turkish German Univ, Grad Sch Nat & Appl Sci, Dept Comp Engn, TR-34820 Istanbul, Turkey
关键词
Protocols; Bit error rate; Natural language processing; Uniform resource locators; Structured Query Language; Firewalls (computing); Deep learning; Anomalous request; BERT; deep learning; web attack; multilayer perceptron; natural language processing;
D O I
10.1109/ACCESS.2022.3185748
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep Learning (DL) and Natural Language Processing (NLP) techniques are improving and enriching with a rapid pace. Furthermore, we witness that the use of web applications is increasing in almost every direction in parallel with the related technologies. Web applications encompass a wide array of use cases utilizing personal, financial, defense, and political information (e.g., wikileaks incident). Indeed, to access and to manipulate such information are among the primary goals of attackers. Thus, vulnerability of the information targeted by adversaries is a vital problem and if such information is captured then the consequences can be devastating, which can, potentially, become national security risks in the extreme cases. In this study, as a remedy to this problem, we propose a novel model that is capable of distinguishing normal HTTP requests and anomalous HTTP requests. Our model employs NLP techniques, Bidirectional Encoder Representations from Transformers (BERT) model, and DL techniques. Our experimental results reveal that the proposed approach achieves a success rate over 99.98% and an F1 score over 98.70% in the classification of anomalous and normal requests. Furthermore, web attack detection time of our model is significantly lower (i.e., 0.4 ms) than the other approaches presented in the literature.
引用
收藏
页码:68633 / 68644
页数:12
相关论文
共 50 条
  • [31] Deep learning-based classification model for botnet attack detection
    Abdulghani Ali Ahmed
    Waheb A. Jabbar
    Ali Safaa Sadiq
    Hiran Patel
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 3457 - 3466
  • [32] Anomaly-Based Web Attack Detection: A Deep Learning Approach
    Liang, Jingxi
    Zhao, Wen
    Ye, Wei
    PROCEEDINGS OF 2017 VI INTERNATIONAL CONFERENCE ON NETWORK, COMMUNICATION AND COMPUTING (ICNCC 2017), 2017, : 80 - 85
  • [33] Deep learning-based classification model for botnet attack detection
    Ahmed, Abdulghani Ali
    Jabbar, Waheb A.
    Sadiq, Ali Safaa
    Patel, Hiran
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 13 (7) : 3457 - 3466
  • [34] Support attack detection algorithm for recommendation system based on deep learning
    Li, Xin
    Wang, Zhixiao
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2023, 2023 (01)
  • [35] Deep Transfer Learning for IoT Attack Detection
    Vu, Ly
    Quang Uy Nguyen
    Nguyen, Diep N.
    Dinh Thai Hoang
    Dutkiewicz, Eryk
    IEEE ACCESS, 2020, 8 : 107335 - 107344
  • [36] Deep Learning Poison Data Attack Detection
    Chacon, Henry
    Silva, Samuel Henrique
    Rad, Paul
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 971 - 978
  • [37] Phishing Attack Detection Using Deep Learning
    Alzahrani, Sabah M.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (12): : 213 - 218
  • [38] Real Time Attack Detection with Deep Learning
    Callegari, Christian
    Bucchianeri, Elena
    Giordano, Stefano
    Pagano, Michele
    2019 16TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING (SECON), 2019,
  • [39] IoT Attack Detection with Deep Learning Analysis
    Pecori, Riccardo
    Tayebi, Amin
    Vannucci, Armando
    Veltri, Luca
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [40] A hybrid Ant Lion Optimization algorithm based lightweight deep learning framework for cyber attack detection in IoT environment
    Gupta, Brij B.
    Gaurav, Akshat
    Attar, Razaz Waheeb
    Arya, Varsha
    Bansal, Shavi
    Alhomoud, Ahmed
    Chui, Kwok Tai
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 122