Neuroimaging predictors of longitudinal disability and cognition outcomes in multiple sclerosis patients: A systematic review and meta-analysis

被引:7
|
作者
Pike, Ashley R. [1 ]
James, George A. [2 ,4 ]
Drew, Paul D. [1 ,3 ,4 ]
Archer, Robert L. [4 ]
机构
[1] Univ Arkansas Med Sci, Brain Imaging Res Ctr, Psychiat Res Inst, Dept Neurobiol & Dev Sci, 4301W Markham St 554, Little Rock, AR 72205 USA
[2] Univ Arkansas Med Sci, Dept Psychiat, Little Rock, AR 72205 USA
[3] Univ Arkansas Med Sci, Dept Neurobiol & Dev Sci, Little Rock, AR 72205 USA
[4] Univ Arkansas Med Sci, Dept Neurol, Little Rock, AR 72205 USA
关键词
Multiple sclerosis; Information processing; Human; Longitudinal studies; Neuroimaging; Disability evaluation; IMPAIRMENT; MEMORY;
D O I
10.1016/j.msard.2021.103452
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Cross-sectional magnetic resonance imaging (MRI) studies have generated substantial evidence relating neuroimaging abnormalities to clinical and cognitive decline in multiple sclerosis (MS). Longitudinal neuroimaging studies may have additional value for predicting future cognitive deficits or clinical impairment, potentially leading to earlier interventions and better disease management. We conducted a meta-analysis of longitudinal studies using neuroimaging to predict cognitive decline (i.e. the Symbol Digits Modalities Test, SDMT) and disability outcomes (i.e. the Expanded Disability Status Scale, EDSS) in MS. Methods: Our systematic literature search yielded 64 relevant publications encompassing 105 distinct sub-analyses. We performed a multilevel random-effects meta-analysis to estimate overall effect size for neuroimaging' s ability to predict longitudinal cognitive and clinical decline, and a meta-regression to investigate the impact of distinct study factors on pooled effect size. Results: In the EDSS analyses, the meta-analysis yielded a medium overall pooled effect size (Pearson's correlation coefficient r = 0.42, 95% CI [0.37; 0.46]). The meta-regression further indicated that analyses exclusively evaluating gray matter tissue had significantly stronger effect sizes than analyses of white matter tissue or whole brain analyses (p < 0.05). No other study factors significantly influenced the pooled effect size (all p > 0.05). In the SDMT analyses, the meta-analysis yielded a medium overall pooled effect size (r = 0.47, 95% CI [0.32; 0.60]). The meta-regression found no significant study factors influencing the pooled effect size. Conclusion: The present findings indicate that brain imaging is a medium predictor of longitudinal change in both disability progression (EDSS) and cognitive decline (SDMT). These findings reinforce the need for further longitudinal studies standardizing methods, using multimodal approaches, creating data consortiums, and publishing more complete datasets investigating MRI modalities to predict longitudinal disability and cognitive decline.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Neuroimaging Predictors of Longitudinal Disability Outcomes in Multiple Sclerosis Patients: A Systematic Review and Meta-Analysis
    Pike, A. R.
    James, G. A.
    Drew, P. D.
    Archer, R. L.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (1_SUPPL) : 207 - 208
  • [2] Neuroimaging markers and disability scales in multiple sclerosis: A systematic review and meta-analysis
    Mirmosayyeb, Omid
    Panah, Mohammad Yazdan
    Mokary, Yousef
    Mohammadi, Mohammad
    Ghaffary, Elham Moases
    Shaygannejad, Vahid
    Weinstock-Guttman, Bianca
    Zivadinov, Robert
    Jakimovski, Dejan
    PLOS ONE, 2024, 19 (12):
  • [3] Social cognition in multiple sclerosis A systematic review and meta-analysis
    Cotter, Jack
    Firth, Joseph
    Enzinger, Christian
    Kontopantelis, Evangelos
    Yung, Alison R.
    Elliott, Rebecca
    Drake, Richard J.
    NEUROLOGY, 2016, 87 (16) : 1727 - 1736
  • [4] The effect of fampridine on cognition in patients with multiple sclerosis (MS): a systematic review and meta-analysis
    Ghajarzadeh, M.
    Mirmosayyeb, O.
    Ebrahimi, N.
    Bagherieh, S.
    Moghadasi, A. Naser
    Sahraian, M. A.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (3_SUPPL) : 907 - 908
  • [5] MRI features and disability in multiple sclerosis: A systematic review and meta-analysis
    Nabizadeh, Fardin
    Zafari, Rasa
    Mohamadi, Mobin
    Maleki, Tahereh
    Fallahi, Mohammad Sadegh
    Rafiei, Nazanin
    JOURNAL OF NEURORADIOLOGY, 2024, 51 (01) : 24 - 37
  • [6] Waist Circumference and Body Mass Index as Predictors of Disability Progression in Multiple Sclerosis: A Systematic Review and Meta-Analysis
    Giannopapas, Vasileios
    Stefanou, Maria-Ioanna
    Smyrni, Vassiliki
    Kitsos, Dimitrios K.
    Kosmidou, Maria
    Stasi, Sophia
    Chasiotis, Athanasios K.
    Stavrogianni, Konstantina
    Papagiannopoulou, Georgia
    Tzartos, John S.
    Paraskevas, George P.
    Tsivgoulis, Georgios
    Giannopoulos, Sotirios
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (06)
  • [7] Neuroimaging predictors of transition to psychosis A systematic review and meta-analysis
    Smieskova, R.
    Fusar-Poli, P.
    Allen, P.
    Bendfeldt, K.
    Stieglitz, R. D.
    Drewe, J.
    Radue, E. W.
    McGuire, P. K.
    Riecher-Roessler, A.
    Borgwardt, S. J.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2010, 34 (08): : 1207 - 1222
  • [8] The effects of pregnancy on relapse rates, disability and peripartum outcomes in women with multiple sclerosis: a systematic review and meta-analysis
    Modrego, Pedro J.
    Urrea, Maria Ananos
    de Cerio, Leyre Diaz
    JOURNAL OF COMPARATIVE EFFECTIVENESS RESEARCH, 2020, 10 (03) : 175 - 186
  • [9] Social cognition in multiple sclerosis and its subtypes A protocol for systematic review and meta-analysis
    Lin, XiaoGuang
    Zhang, XueLing
    Liu, QinQin
    Zhao, PanWen
    Zhong, JianGuo
    Pan, PingLei
    Wang, GenDi
    Yi, ZhongQuan
    MEDICINE, 2020, 99 (33) : E21750
  • [10] Systematic review and meta-analysis of reflexology for people with multiple sclerosis: Systematic Review and Meta-Analysis
    Ma, Xiaohong
    Yuan, Zhaoyu
    Qian, Baicheng
    Guan, Yunxiang
    Wang, Baoliang
    MEDICINE, 2023, 102 (05) : E32661