Interreader Reliability of LI-RADS Version 2014 Algorithm and Imaging Features for Diagnosis of Hepatocellular Carcinoma: A Large International Multireader Study

被引:87
|
作者
Fowler, Kathryn J. [1 ]
Tang, An [2 ]
Santillan, Cynthia [3 ]
Bhargavan-Chatfield, Mythreyi [5 ]
Heiken, Jay [1 ]
Jha, Reena C. [6 ]
Weinreb, Jeffrey [7 ]
Hussain, Hero [8 ]
Mitchell, Donald G. [9 ]
Bashir, Mustafa R. [10 ]
Costa, Eduardo A. C. [11 ]
Cunha, Guilherme M. [12 ]
Coombs, Laura [5 ]
Wolfson, Tanya [4 ]
Gamst, Anthony C. [4 ]
Brancatelli, Giuseppe [13 ]
Yeh, Benjamin [14 ]
Sirlin, Claude B. [3 ]
机构
[1] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, 510 S Kingshighway Blvd, St Louis, MO 63110 USA
[2] Ctr Hosp Univ Montreal, Dept Radiol, Montreal, PQ, Canada
[3] Univ Calif San Diego, Dept Radiol, Liver Imaging Grp, San Diego, CA 92103 USA
[4] Univ Calif San Diego, Computat & Appl Stat Lab, San Diego Supercomp Ctr, San Diego, CA 92103 USA
[5] Amer Coll Radiol, Reston, VA USA
[6] MedStar Georgetown Univ Hosp, Dept Radiol, Washington, DC USA
[7] Yale Med Sch, Dept Radiol, New Haven, CT USA
[8] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[9] Thomas Jefferson Univ, Dept Radiol, Philadelphia, PA 19107 USA
[10] Duke Univ, Med Ctr, Dept Radiol, Ctr Adv Magnet Resonance Dev, Durham, NC 27710 USA
[11] Cedrul CT & MRI, Joao Pessoa, Paraiba, Brazil
[12] Clin Diagnost Imagem CDPI DASA, Rio De Janeiro, Brazil
[13] Univ Palermo, Div Radiol Sci, Di Bi Med, Palermo, Italy
[14] Univ Calif San Francisco, Dept Radiol, San Francisco, CA USA
关键词
INTRACLASS CORRELATION-COEFFICIENT; DATA SYSTEM; CIRRHOTIC LIVER; MR; NODULES; CANCER; CT; CLASSIFICATION; ALLOCATION; WASHOUT;
D O I
10.1148/radiol.2017170376
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To determine in a large multicenter multireader setting the interreader reliability of Liver Imaging Reporting and Data System (LI-RADS) version 2014 categories, the major imaging features seen with computed tomography (CT) and magnetic resonance (MR) imaging, and the potential effect of reader demographics on agreement with a preselected nonconsecutive image set. Materials and Methods: Institutional review board approval was obtained, and patient consent was waived for this retrospective study. Ten image sets, comprising 38-40 unique studies (equal number of CT and MR imaging studies, uniformly distributed LI-RADS categories), were randomly allocated to readers. Images were acquired in unenhanced and standard contrast material-enhanced phases, with observation diameter and growth data provided. Readers completed a demographic survey, assigned LI-RADS version 2014 categories, and assessed major features. Intraclass correlation coefficient (ICC) assessed with mixed-model regression analyses was the metric for interreader reliability of assigning categories and major features. Results: A total of 113 readers evaluated 380 image sets. ICC of final LI-RADS category assignment was 0.67 (95% confidence interval [CI]: 0.61, 0.71) for CT and 0.73 (95% CI: 0.68, 0.77) for MR imaging. ICC was 0.87 (95% CI: 0.84, 0.90) for arterial phase hyperenhancement, 0.85 (95% CI: 0.81, 0.88) for washout appearance, and 0.84 (95% CI: 0.80, 0.87) for capsule appearance. ICC was not significantly affected by liver expertise, LI-RADS familiarity, or years of postresidency practice (ICC range, 0.69-0.70; ICC difference, 0.003-0.01 [95% CI: -0.003 to -0.01, 0.004-0.02]. ICC was borderline higher for private practice readers than for academic readers (ICC difference, 0.009; 95% CI: 0.000, 0.021). Conclusion: ICC is good for final LI-RADS categorization and high for major feature characterization, with minimal reader demographic effect. Of note, our results using selected image sets from nonconsecutive examinations are not necessarily comparable with those of prior studies that used consecutive examination series. (C) RSNA, 2017.
引用
收藏
页码:173 / 185
页数:13
相关论文
共 50 条
  • [21] CEUS LI-RADS for diagnosis of hepatocellular carcinoma in individuals without LI-RADS-defined hepatocellular carcinoma risk factors
    Huang, Zhe
    Zhou, Ping Ping
    Li, Shan Shan
    Li, Kaiyan
    CANCER IMAGING, 2023, 23 (01)
  • [22] Individual Participant Data Meta-Analysis of LR-5 in LI-RADS Version 2018 versus Revised LI-RADS for Hepatocellular Carcinoma Diagnosis
    Goins, Stacy M.
    Jiang, Hanyu
    van der Pol, Christian B.
    Salameh, Jean-Paul
    Lam, Eric
    Adamo, Robert G.
    McInnes, Matthew D. F.
    Costa, Andreu F.
    Tang, An
    Alhasan, Ayman S.
    Allen, Brian C.
    Reiner, Caecilia S.
    Clarke, Christopher
    Cerny, Milena
    Wang, Jin
    Choi, Sang Hyun
    Fraum, Tyler J.
    Ludwig, Daniel R.
    Song, Bin
    Joo, Ijin
    Kang, Zhen
    Kierans, Andrea S.
    Kim, So Yeon
    Kwon, Heejin
    Ronot, Maxime
    Podgorska, Joanna
    Rosiak, Grzegorz
    Song, Ji Soo
    Bashir, Mustafa R.
    RADIOLOGY, 2023, 309 (03)
  • [23] Diagnostic Performance of LI-RADS Version 2018 for Evaluation of Pediatric Hepatocellular Carcinoma
    Khanna, Geetika
    Chavhan, Govind B.
    Schooler, Gary R.
    Fraum, Tyler J.
    Alazraki, Adina L.
    Squires, Judy H.
    Salter, Amber
    Podberesky, Daniel J.
    Towbin, Alexander J.
    RADIOLOGY, 2021, 299 (01) : 190 - 199
  • [24] Liver imaging reporting and data system (LI-RADS) version 2014: understanding and application of the diagnostic algorithm
    An, Chansik
    Rakhmonova, Gulbahor
    Choi, Jin-Young
    Kim, Myeong-Jin
    CLINICAL AND MOLECULAR HEPATOLOGY, 2016, 22 (02) : 296 - 307
  • [25] Modified CEUS LI-RADS using Sonazoid for the diagnosis of hepatocellular carcinoma
    Sugimoto, Katsutoshi
    Kamiyama, Naohisa
    Kakegawa, Tatsuya
    Takahashi, Hiroshi
    Wada, Takuya
    Abe, Masakazu
    Yoshimasu, Yu
    Takeuchi, Hirohito
    Itoi, Takao
    ULTRASONOGRAPHY, 2023, 42 (03) : 388 - 399
  • [26] Validation of Liver Imaging Reporting and Data System (LI-RADS) Version 2014
    Pecorelli, A.
    Nani, R.
    Sala, F.
    Pinelli, D.
    De Giorgio, M.
    Magini, G.
    Colledan, M.
    Fagiuoli, S.
    Sironi, S.
    DIGESTIVE AND LIVER DISEASE, 2017, 49 (01) : E49 - E49
  • [27] Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients
    Chernyak, Victoria
    Fowler, Kathryn J.
    Kamaya, Aya
    Kielar, Ania Z.
    Elsayes, Khaled M.
    Bashir, Mustafa R.
    Kono, Yuko
    Do, Richard K.
    Mitchell, Donald G.
    Singal, Amit G.
    Tang, An
    Sirlin, Claude B.
    RADIOLOGY, 2018, 289 (03) : 816 - 830
  • [28] Validation of Liver Imaging Reporting and Data System 2017 (LI-RADS) Criteria for Imaging Diagnosis of Hepatocellular Carcinoma
    Kierans, Andrea S.
    Makkar, Jasnit
    Guniganti, Preethi
    Cornman-Homonoff, Joshua
    Lee, Michael J.
    Pittman, Meredith
    Askin, Gulce
    Hecht, Elizabeth M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (07) : E205 - E215
  • [29] Comparison of Visualization Rates of LI-RADS Version 2014 Major Features With IV Gadobenate Dimeglumine or Gadoxetate Disodium in Patients at Risk for Hepatocellular Carcinoma
    Allen, Brian C.
    Ho, Lisa M.
    Jaffe, Tracy A.
    Miller, Chad M.
    Mazurowski, Maciej A.
    Bashir, Mustafa R.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 210 (06) : 1266 - 1272
  • [30] LI-RADS version 2018 for hepatocellular carcinoma < 1.0 cm on gadoxetate disodium–enhanced magnetic resonance imaging
    Hyeon Ji Jang
    Sang Hyun Choi
    Se Jin Choi
    Won-Mook Choi
    Jae Ho Byun
    Hyung Jin Won
    Yong Moon Shin
    European Radiology, 2023, 33 : 5792 - 5800