Estimation of Parameters in a Bivariate Generalized Exponential Distribution Based on Type-II Censored Samples

被引:6
|
作者
Kim, Seong W. [1 ]
Ng, Hon Keung Tony [2 ]
Jang, Hakjin [1 ]
机构
[1] Hanyang Univ, Dept Appl Math, Seoul, South Korea
[2] Southern Methodist Univ, Dept Stat Sci, Dallas, TX 75275 USA
基金
新加坡国家研究基金会;
关键词
Bayesian estimation; Dependence measure; Maximum likelihood estimation; Monte Carlo simulation; Numerical method; 62F10; 62F15; 62H12; EM ALGORITHM; KENDALLS TAU;
D O I
10.1080/03610918.2015.1130834
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we discuss the maximum likelihood estimation and Bayesian estimation procedures for estimating the parameters in an absolute continuous bivariate generalized exponential distribution based on Type-II censored samples. A Markov chain Monte Carlo method is applied to compute the Bayes estimates. We also propose a method to obtain the initial estimates of the parameters for the required iterative algorithm. A simulation study is used to evaluate the performance of the proposed estimation procedures. Two real data examples are utilized to illustrate the methodology developed in this manuscript.
引用
收藏
页码:3776 / 3797
页数:22
相关论文
共 50 条