Saturations fields in the Shubnikov-de Haas oscillations

被引:1
|
作者
Cardoso, JL [1 ]
Pereyra, P [1 ]
机构
[1] Univ Autonoma Metropolitana Azcapotzalco, Area Fis Teor & Mat Condensada, Mexico City 02200, DF, Mexico
关键词
D O I
10.1002/pssc.200460741
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the Shubnikov-de Haas oscillations in the magnetoresistance and Landauer conductance of a three strip quasi-2D semiconductor wave guide with thickness delta(z) and transversal width w(y). We assume that the strip in the middle, of length l(H), is subject to a homogeneous magnetic field, tilted by theta(H) with respect to the normal z of the 2DEG. The structure of the Shubnikov-de Haas oscillations, associated with spin parallel and antiparallel to the z-component of the magnetic field, and the finiteness of l(H), lead us to define, related with the limits between the corresponding Landau levels and the continuous spectrum, two characteristic saturation fields B-sat,up arrow = 2 Phi(o)/l(H)cos theta(H) (2n(S)/pi - 1/delta(2)(z))(1/2) and B-sat,down arrow defined by the positive root of B-sat(2),(down arrow) + 4g Phi(o)/pi l(H)(2)cos(2)theta(H) B-sat,(down arrow) - B-sat,(up arrow) = 0. Here g is the Lande factor, Phi(o) the unit magnetic flux and n(s) the charge concentration. We also obtain the polarization field B-p = Phi(o)/g 2n(s) - pi/delta(2)(z). (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:3153 / 3156
页数:4
相关论文
共 50 条
  • [31] MAGNETIC BREAKDOWN AND SHUBNIKOV-DE HAAS OSCILLATIONS IN WHITE TIN
    YOUNG, RC
    PHYSICS LETTERS A, 1968, A 27 (08) : 539 - &
  • [32] Transversal magnetoresistance and Shubnikov-de Haas oscillations in Weyl semimetals
    Klier, J.
    Gornyi, I. V.
    Mirlin, A. D.
    PHYSICAL REVIEW B, 2017, 96 (21)
  • [33] Shubnikov-de Haas oscillations in CoSb3 single crystals
    Arushanov, E
    Respaud, M
    Rakoto, H
    Broto, JM
    Caillat, T
    PHYSICAL REVIEW B, 2000, 61 (07): : 4672 - 4676
  • [34] Shubnikov-de Haas oscillations in the anomalous Hall conductivity of Chern insulators
    Canonico, Luis M.
    Garcia, Jose H.
    Rappoport, Tatiana G.
    Ferreira, Aires
    Muniz, R. B.
    PHYSICAL REVIEW B, 2018, 98 (08)
  • [35] Weak antilocalization and Shubnikov-de Haas oscillations in single crystal CaCuSb
    Sasmal, Souvik
    Saini, Vikas
    Bruyant, Nicolas
    Mondal, Rajib
    Kulkarni, Ruta
    Singh, Bahadur
    Tripathi, Vikram
    Thamizhavel, A.
    PHYSICAL REVIEW B, 2021, 104 (20)
  • [36] Anomalous Shubnikov-de Haas oscillations in two-dimensional systems
    Winkler, R
    Papadakis, SJ
    De Poortere, EP
    Lu, JP
    Shayegan, M
    PHYSICA B, 2001, 298 (1-4): : 13 - 17
  • [37] SHUBNIKOV-DE HAAS OSCILLATIONS IN GRAPHITE SELECTIVE SCATTERING BY CHARGED IMPURITIES
    BENDER, AS
    YOUNG, DA
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1972, 13 (02): : 631 - +
  • [38] Shubnikov-de Haas Oscillations in Semiconductors at the Microwave-Radiation Absorption
    Gulyamov, G.
    Erkaboev, U. I.
    Gulyamov, A. G.
    ADVANCES IN CONDENSED MATTER PHYSICS, 2019, 2019
  • [39] SHUBNIKOV-DE HAAS EFFECT IN HGSE
    PONOMAREV, AI
    POTAPOV, GA
    TSIDILKOVSKII, IM
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1977, 11 (01): : 24 - 27
  • [40] SHUBNIKOV-DE HAAS EFFECT IN BISMUTH
    LERNER, LS
    PHYSICAL REVIEW, 1962, 127 (05): : 1480 - &