A two-level directional model for dependence in circular data

被引:1
|
作者
Holmquist, Bjorn [1 ]
Gustafsson, Peter [2 ]
机构
[1] Lund Univ, Dept Stat, Lund, Sweden
[2] Lund Univ, Ctr Math Sci, Lund, Sweden
关键词
Circular distribution; second order analysis; two-level analysis; von Mises distribution; MSC 2010: Primary 62H11; secondary; 62H15; VON MISES DISTRIBUTION; BAYESIAN-ANALYSIS; ORIENTATION; LOCATION; TESTS;
D O I
10.1002/cjs.11345
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a likelihood-based test for clustering among sub-population mean directions for circular data. The test is based on a two-level hierarchical model with von Mises distributed variation on each level. The properties of the tests are investigated and compared to the commonly applied techniques of second-order analysis and pseudo-pooling of directions for the situation at hand. Finally we apply the technique to some previously published data sets, to determine the presence of directional clustering among the sub-populations. The Canadian Journal of Statistics 45: 461-478; 2017 (c) 2017 Statistical Society of Canada
引用
收藏
页码:461 / 478
页数:18
相关论文
共 50 条
  • [31] A two-level model for automatic image annotation
    Xiao Ke
    Shaozi Li
    Donglin Cao
    Multimedia Tools and Applications, 2012, 61 : 195 - 212
  • [32] A Bayesian two-level model for fluctuation assay
    Zheng, Qi
    GENETICA, 2011, 139 (11-12) : 1409 - 1416
  • [33] A TWO-LEVEL MODEL OF MOTOR PERFORMANCE ABILITY
    Laemmle, Lena
    Tittlbach, Susanne
    Oberger, Jennifer
    Worth, Annette
    Boes, Klaus
    JOURNAL OF EXERCISE SCIENCE & FITNESS, 2010, 8 (01) : 41 - 49
  • [34] A TWO-LEVEL DISCRETIZATION METHOD FOR THE SMAGORINSKY MODEL
    Borggaard, Jeff
    Iliescu, Traian
    Lee, Hyesuk
    Roop, John Paul
    Son, Hyunjin
    MULTISCALE MODELING & SIMULATION, 2008, 7 (02): : 599 - 621
  • [35] Dynamics of a two-level model with fine structure
    Fu, CR
    Shaban, AA
    Gong, CD
    PHYSICAL REVIEW A, 1996, 53 (06): : 4500 - 4507
  • [36] Model discrimination for dephasing two-level systems
    Gong, Er-ling
    Zhou, Weiwei
    Schirmer, Sophie
    PHYSICS LETTERS A, 2015, 379 (04) : 272 - 278
  • [37] A Two-Level Inspection Model With Technological Insertions
    Wang, Wenbin
    Carr, Matthew J.
    Chow, Tommy W. S.
    Pecht, Michael G.
    IEEE TRANSACTIONS ON RELIABILITY, 2012, 61 (02) : 479 - 490
  • [38] The two-level structure of the mesopause: A model study
    Berger, U
    von Zahn, U
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D18) : 22083 - 22093
  • [39] A modification of Maslov's two-level model
    Koval', GV
    Maslov, VP
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2003, 10 (02) : 149 - 160
  • [40] Two-level Friedrichs model and kaonic phenomenology
    Courbage, M.
    Durt, T.
    Fathi, S. M. Saberi
    PHYSICS LETTERS A, 2007, 362 (2-3) : 100 - 104