Robust nonnegative garrote variable selection in linear regression

被引:17
|
作者
Gijbels, I. [1 ]
Vrinssen, I.
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Leuven, Belgium
关键词
Multiple linear regression; MM-estimation; Nonnegative garrote; S-estimation; Variable selection; HIGH BREAKDOWN-POINT; SHRINKAGE;
D O I
10.1016/j.csda.2014.11.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Robust selection of variables in a linear regression model is investigated. Many variable selection methods are available, but very few methods are designed to avoid sensitivity to vertical outliers as well as to leverage points. The nonnegative garrote method is a powerful variable selection method, developed originally for linear regression but recently successfully extended to more complex regression models. The method has good performances and its theoretical properties have been established. The aim is to robustify the nonnegative garrote method for linear regression as to make it robust to vertical outliers and leverage points. Several approaches are discussed, and recommendations towards a final good performing robust nonnegative garrote method are given. The proposed method is evaluated via a simulation study that also includes a comparison with existing methods. The method performs very well, and often outperforms existing methods. A real data application illustrates the use of the method in practice. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [41] Robust variable selection for finite mixture regression models
    Qingguo Tang
    R. J. Karunamuni
    Annals of the Institute of Statistical Mathematics, 2018, 70 : 489 - 521
  • [42] Robust Variable Selection and Estimation in Threshold Regression Model
    Bo-wen Li
    Yun-qi Zhang
    Nian-sheng Tang
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 332 - 346
  • [43] Variable selection in robust regression models for longitudinal data
    Fan, Yali
    Qin, Guoyou
    Zhu, Zhongyi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 109 : 156 - 167
  • [44] Robust Variable Selection and Estimation in Threshold Regression Model
    Bo-wen LI
    Yun-qi ZHANG
    Nian-sheng TANG
    Acta Mathematicae Applicatae Sinica, 2020, 36 (02) : 332 - 346
  • [45] Robust Variable Selection and Estimation in Threshold Regression Model
    Li, Bo-wen
    Zhang, Yun-qi
    Tang, Nian-sheng
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (02): : 332 - 346
  • [46] Robust variable selection for finite mixture regression models
    Tang, Qingguo
    Karunamuni, R. J.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2018, 70 (03) : 489 - 521
  • [47] Nonnegative estimation and variable selection under minimax concave penalty for sparse high-dimensional linear regression models
    Ning Li
    Hu Yang
    Statistical Papers, 2021, 62 : 661 - 680
  • [48] Nonnegative estimation and variable selection under minimax concave penalty for sparse high-dimensional linear regression models
    Li, Ning
    Yang, Hu
    STATISTICAL PAPERS, 2021, 62 (02) : 661 - 680
  • [49] A sparse regularized soft sensor based on GRU and self-interpretation double nonnegative garrote: From variable selection to structure optimization
    Sui, Lin
    Sun, Wenxin
    Liu, Wentao
    Xiong, Weili
    CONTROL ENGINEERING PRACTICE, 2024, 153
  • [50] Variable selection in partial linear regression using the least angle regression
    Seo, Han Son
    Yoon, Min
    Lee, Hakbae
    KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (06) : 937 - 944