An Integration-by-Parts Formula in L1-Spaces

被引:0
|
作者
Tan Duc Do [1 ]
机构
[1] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
关键词
Degenerate elliptic operator; Integration by parts; Accretive operators; Sobolev space; Duality set; DEGENERATE ELLIPTIC-OPERATORS;
D O I
10.1007/s00025-021-01508-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let d is an element of N and theta is an element of [0, pi/2). Let a(ij) is an element of W-1,W-infinity(R-d, R) for all i, j is an element of {1, ..., d}. Assume C = (a(ij))(1 <= i,j <= d) satisfies (C(x) xi, xi) is an element of Sigma(theta) for all x is an element of R-d and xi is an element of C-d, where Sigma(theta) is the closed sector with vertex 0 and semi-angle theta in the complex plane. Consider the operator A(1) in L-1(R-d) formally given by A(1)u = -Sigma(d)(i,j=1) partial derivative(i)(a(ij) partial derivative(j)u). We prove that A(1) is accretive on W-3,W-1(R-d).
引用
收藏
页数:16
相关论文
共 50 条
  • [31] DUAL L1-SPACES AND INJECTIVE BIDUAL BANACH-SPACES
    HAYDON, R
    ISRAEL JOURNAL OF MATHEMATICS, 1978, 31 (02) : 142 - 152
  • [32] PERIODS OF NONEXPANSIVE OPERATORS ON FINITE L1-SPACES
    SCHEUTZOW, M
    EUROPEAN JOURNAL OF COMBINATORICS, 1988, 9 (01) : 73 - 81
  • [33] On the essential spectrum of transport operators on L1-spaces
    Latrach, K.
    Jeribi, A.
    Journal of Mathematical Physics, 37 (12):
  • [35] FACTORIZATION OF OPERATORS THROUGH SUBSPACES OF L1-SPACES
    Calabuig, J. M.
    Rodriguez, J.
    Sanchez-Perez, E. A.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (03) : 313 - 328
  • [36] L1-spaces of vector measures defined on δ-rings
    Delgado, O
    ARCHIV DER MATHEMATIK, 2005, 84 (05) : 432 - 443
  • [37] Choquet type L1-spaces of a vector capacity
    Delgado, O.
    Sanchez Perez, E. A.
    FUZZY SETS AND SYSTEMS, 2017, 327 : 98 - 122
  • [38] Multipliers on Vector-valued L1-spaces for Hypergroups
    Sarma, R.
    Kumar, N. Shravan
    Kumar, Vishvesh
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (07) : 1059 - 1073
  • [39] On integration by parts formula on open convex sets in Wiener spaces
    Davide Addona
    Giorgio Menegatti
    Michele Miranda
    Journal of Evolution Equations, 2021, 21 : 1917 - 1944
  • [40] On integration by parts formula on open convex sets in Wiener spaces
    Addona, Davide
    Menegatti, Giorgio
    Miranda, Michele, Jr.
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1917 - 1944