Error estimation for the finite element evaluation of GI and GII in mixed-mode linear elastic fracture mechanics

被引:19
|
作者
Giner, E [1 ]
Fuenmayor, FJ [1 ]
Baeza, L [1 ]
Tarancón, JE [1 ]
机构
[1] Univ Politecn Valencia, Dept Ingn Mecan & Mat, E-46022 Valencia, Spain
关键词
discretization error; error estimation; strain energy release rate; EDI-method; sensitivity analysis; mixed-mode fracture;
D O I
10.1016/j.finel.2004.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A discretization error estimator for the finite element evaluation of the strain energy release rates (SERRs) G(I), G(II) is presented for mixed-mode bidimensional problems of the linear elastic fracture mechanics (LEFM). The estimator is related to one of the most efficient energetic methods: the equivalent domain integral method (EDI). A continuum approach of the shape design sensitivity analysis (SDSA) is applied to the fracture mechanics problem in combination with the field decomposition technique to obtain separate estimates of the discretization error for each mode. The error estimator enables an a posteriori improvement of G(I), G(II) for a given finite element mesh. The improvement is achieved by adding the estimated errors to the previously calculated values of G(I), G(II) by means of the discrete analytical stiffness derivative method (DASD). This is verified through numerical examples based on the Westergaard's problem and a finite domain problem. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1079 / 1104
页数:26
相关论文
共 50 条
  • [31] MIXED-MODE SAMPLING AND ERROR ESTIMATION IN DIGITAL WATTMETERS
    FILICORI, F
    IUCULANO, G
    MIRRI, D
    ELECTRONICS LETTERS, 1984, 20 (20) : 828 - 829
  • [32] A LOADING DEVICE FOR THE CREATION OF MIXED-MODE IN FRACTURE-MECHANICS
    RICHARD, HA
    INTERNATIONAL JOURNAL OF FRACTURE, 1983, 22 (02) : R55 - R58
  • [33] Convergence aspects of the eXtended Finite Element Method applied to linear elastic fracture mechanics
    Fleming, Wagner
    Kuhl, Detlef
    COMPUTATIONAL MODELLING OF CONCRETE STRUCTURES, 2010, : 309 - 318
  • [34] Finite element technology for gradient elastic fracture mechanics
    Bagni, Cristian
    Askes, Harm
    Susmel, Luca
    20TH EUROPEAN CONFERENCE ON FRACTURE, 2014, 3 : 2042 - 2047
  • [35] Extended Powell-Sabin finite element scheme for linear elastic fracture mechanics
    Chen, L.
    Bahai, H.
    Alfano, G.
    ENGINEERING FRACTURE MECHANICS, 2022, 274
  • [36] A combined virtual element method and the scaled boundary finite element method for linear elastic fracture mechanics
    Adak, Dibyendu
    Pramod, A. L. N.
    Ooi, Ean Tat
    Natarajan, Sundararajan
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2020, 113 : 9 - 16
  • [37] Continuum shape sensitivity analysis of fracture using fractal finite element mixed-mode method
    Reddy, R. N.
    Rao, B. N.
    ENGINEERING FRACTURE MECHANICS, 2008, 75 (10) : 2860 - 2906
  • [38] Robust a posteriori error estimation for mixed finite element approximation of linear poroelasticity
    Khan, Arbaz
    Silvester, David J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (03) : 2000 - 2025
  • [39] From finite to linear elastic fracture mechanics by scaling
    Negri, M.
    Zanini, C.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 50 (3-4) : 525 - 548
  • [40] From finite to linear elastic fracture mechanics by scaling
    M. Negri
    C. Zanini
    Calculus of Variations and Partial Differential Equations, 2014, 50 : 525 - 548