On the singular sector of the Hermitian random matrix model in the large N limit

被引:6
|
作者
Konopelchenko, B. [2 ,3 ]
Martinez Alonso, L. [4 ]
Medina, E. [1 ]
机构
[1] Univ Cadiz, Dept Matemat, E-11510 Cadiz, Spain
[2] Univ Salento, Dipartimento Fis, I-73100 Lecce, Italy
[3] Sezione Ist Nazl Fis Nucl, I-73100 Lecce, Italy
[4] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain
关键词
Integrable systems; Hodograph equations; Random matrix models; Euler-Poisson-Darboux equation; NONLINEAR SCHRODINGER-EQUATION; WHITHAM EQUATIONS; HIERARCHY; GRAVITY;
D O I
10.1016/j.physleta.2010.12.055
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The one-cut case of the Hermitian random matrix model in the large N limit is considered. Its singular sector in the space of coupling constants is analyzed from the point of view of the hodograph equations of the underlying dispersionless Toda hierarchy. A deep connection with the singular sector of the hodograph equations of the 1-layer Benney (classical long wave equation) hierarchy is stablished. This property is a consequence of the fact that the hodograph equations for both hierarchies describe the critical points of solutions of Euler-Poisson-Darboux equations. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:867 / 872
页数:6
相关论文
共 50 条
  • [21] ON THE LARGE-N LIMIT IN SYMPLECTIC MATRIX MODELS
    ANDRIC, I
    JEVICKI, A
    LEVINE, H
    NUCLEAR PHYSICS B, 1983, 215 (02) : 307 - 315
  • [22] Universality of a double scaling limit near singular edge points in random matrix models
    Claeys, T.
    Vanlessen, M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (02) : 499 - 532
  • [23] Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models
    T. Claeys
    M. Vanlessen
    Communications in Mathematical Physics, 2007, 273 : 499 - 532
  • [24] On the large charge sector in the critical O(N) model at large N
    Simone Giombi
    Jonah Hyman
    Journal of High Energy Physics, 2021
  • [25] On the large charge sector in the critical O(N) model at large N
    Giombi, Simone
    Hyman, Jonah
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (09)
  • [26] Non-hermitian random matrix theory: Method of hermitian reduction
    Feinberg, J
    Zee, A
    NUCLEAR PHYSICS B, 1997, 504 (03) : 579 - 608
  • [27] Large n Limit for the Product of Two Coupled Random Matrices
    Silva, Guilherme L. F.
    Zhang, Lun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (03) : 2345 - 2427
  • [28] Large n Limit for the Product of Two Coupled Random Matrices
    Guilherme L. F. Silva
    Lun Zhang
    Communications in Mathematical Physics, 2020, 377 : 2345 - 2427
  • [29] CRITICAL-BEHAVIOR OF A FERMIONIC RANDOM-MATRIX MODEL AT LARGE-N
    MARSHALL, N
    SEMENOFF, GW
    SZABO, RJ
    PHYSICS LETTERS B, 1995, 351 (1-3) : 153 - 161
  • [30] Non-hermitian random matrix models
    Janik, RA
    Nowak, MA
    Papp, G
    Zahed, I
    NUCLEAR PHYSICS B, 1997, 501 (03) : 603 - 642