A piecewise-polynomial approach to the stability analysis of non-linear switching controllers in presence of sliding modes with application to pneumatic systems

被引:0
|
作者
Ameur, Omar [1 ]
Massioni, Paolo [2 ]
Scorletti, Gerard [1 ]
Brun, Xavier [2 ]
Smaoui, Mohamed [2 ]
机构
[1] Univ Lyon, UMR CNRS 5005, Ecole Cent Lyon, Lab Ampere, Lyon, France
[2] Univ Lyon, INSA Lyon, UMR CNRS 5005, Lab Ampere, Lyon, France
关键词
LYAPUNOV FUNCTIONS; ANALYSIS TOOLS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper concerns the stability analysis of nonlinear, switching control laws for pneumatic actuators. A first approach to the problem has been proposed by the authors in [1], under the hypothesis of a simplified model of friction. The approach is based on casting the closed-loop system into a piecewise-affine form. However, if a more realistic friction model is introduced, the method in [1] proves to be too conservative, and unfit to deal with the sliding modes that can occur with this new model. This paper proposes a new method for proving the stability on the system by introducing a less conservative class of Lyapunov function, namely piecewise-polynomial ones. At the end of the paper, we show how such a method can be successfully applied to our experimental setup.
引用
收藏
页码:4872 / 4878
页数:7
相关论文
共 50 条
  • [41] Algorithm for response and stability of large order non-linear systems - application to rotor systems
    Sundararajan, P.
    Noah, S.T.
    Journal of Sound and Vibration, 1999, 214 (04): : 695 - 723
  • [42] An algorithm for response and stability of large order non-linear systems - Application to rotor systems
    Sundararajan, P
    Noah, ST
    JOURNAL OF SOUND AND VIBRATION, 1998, 214 (04) : 695 - 723
  • [43] Robust control of a class of non-linear cascade systems: a novel sliding mode approach
    Su, JP
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2002, 149 (02): : 131 - 136
  • [44] Application of a non-linear damped harmonic analysis method to the normal modes of the Earth
    Rosat, Severine
    Fukushima, Toshio
    Sato, Tadahiro
    Tamura, Yoshiaki
    JOURNAL OF GEODYNAMICS, 2008, 45 (01) : 63 - 71
  • [45] On stability for discrete-time non-linear singular systems with switching actuators via average dwell time approach
    Liu, Yunlong
    Wang, Juan
    Gao, Cunchen
    Gao, Zairui
    Wu, Xiaojin
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2017, 39 (12) : 1771 - 1776
  • [46] A NOTE ON THE APPLICATION OF A GENERALIZED CANONICAL APPROACH TO NON-LINEAR HAMILTONIAN SYSTEMS
    Howland, R. A.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1988, 45 (04): : 407 - 412
  • [47] Robust Unknown Input Observer for Uncertain Non-Linear Systems using Sliding Modes with Fault Detection
    Gurjar, Bhagyashri
    Bandyopadhyay, Bijnan
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [48] A matrix pencil approach to the local stability analysis of non-linear circuits
    Riaza, R
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2004, 32 (01) : 23 - 46
  • [49] Voltage stability analysis in the power systems including non-linear loads
    Uzunoglu, M
    Kocatepe, C
    Yumurtaci, R
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2004, 14 (01): : 41 - 56
  • [50] FREQUENCY-DOMAIN STABILITY ANALYSIS FOR NON-LINEAR FEEDBACK SYSTEMS
    SHEARER, JL
    ETZWEILER, GA
    REID, KN
    CONTROL, 1968, 12 (118): : 336 - +