Approximation of Certain Non-vanishing Analytic Functions in a Parabolic Region

被引:1
|
作者
Arora, Vibhuti [1 ]
Sahoo, Swadesh Kumar [1 ]
Singh, Sanjeev [1 ]
机构
[1] Indian Inst Technol Indore, Dept Math, Indore 453552, India
关键词
Univalent functions; uniformly convex; parabolic starlike; approximations; quadratic programming; Karush-Kuhn-Tucker conditions; 30C45; 30E10; 41A30; UNIVALENT-FUNCTIONS; AREA;
D O I
10.1007/s00025-021-01434-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider a class of analytic functions f defined in the unit disk for which the values of zf ' /f lie in a parabolic region of the right-half plane. By using a well-known sufficient condition for functions to be in this class in terms of the Taylor coefficients of z/f, we introduce a subclass F alpha of this class. The aim of the paper is to find the best approximation of non-vanishing analytic functions of the form z/f by functions z/g with g is an element of F alpha. The proof relies on solving a semi-infinite quadratic problem, a problem of independent interest.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Bergman space extremal problems for non-vanishing functions
    T. Sheil-Small
    Journal d'Analyse Mathématique, 2012, 118 : 1 - 17
  • [22] SIMULTANEOUS NON-VANISHING FOR DIRICHLET L-FUNCTIONS
    Zacharias, Raphael
    ANNALES DE L INSTITUT FOURIER, 2019, 69 (04) : 1459 - 1524
  • [23] QUANTITATIVE NON-VANISHING RESULTS ON L-FUNCTIONS
    Jiang, Yujiao
    Lu, Guangshi
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (03): : 813 - 830
  • [24] On simultaneous non-vanishing of modular L-functions
    Chida, Masataka
    ARCHIV DER MATHEMATIK, 2007, 89 (03) : 211 - 215
  • [25] Bergman space extremal problems for non-vanishing functions
    Sheil-Small, T.
    JOURNAL D ANALYSE MATHEMATIQUE, 2012, 118 : 1 - 17
  • [26] On simultaneous non-vanishing of modular L-functions
    Masataka Chida
    Archiv der Mathematik, 2007, 89 : 211 - 215
  • [27] Non-vanishing of symmetric square L-functions
    Lau, YK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (11) : 3133 - 3139
  • [28] On Almost Lyapunov Functions for Non-vanishing Vector Fields
    Liu, Shenyu
    Liberzon, Daniel
    Zharnitsky, Vadim
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 5557 - 5562
  • [29] ELEMENTARY PROOF OF NON-VANISHING OF CERTAIN LOCAL COHOMOLOGY MODULES
    MACDONALD, IG
    SHARP, RY
    QUARTERLY JOURNAL OF MATHEMATICS, 1972, 23 (90): : 197 - +
  • [30] Starlikeness of a product of starlike functions with non-vanishing polynomials
    Somya Malik
    V. Ravichandran
    Analysis and Mathematical Physics, 2023, 13