GLOBAL CAUCHY PROBLEM OF A SYSTEM OF PARABOLIC CONSERVATION LAWS ARISING FROM A KELLER-SEGEL TYPE CHEMOTAXIS MODEL
被引:10
|
作者:
Zhu, Neng
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R ChinaNanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
Zhu, Neng
[1
]
Liu, Zhengrong
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R ChinaNanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
Liu, Zhengrong
[2
]
Martinez, Vincent R.
论文数: 0引用数: 0
h-index: 0
机构:
Tulane Univ, Dept Math, New Orleans, LA 70118 USANanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
Martinez, Vincent R.
[3
]
Zhao, Kun
论文数: 0引用数: 0
h-index: 0
机构:
Tulane Univ, Dept Math, New Orleans, LA 70118 USANanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
Zhao, Kun
[3
]
机构:
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[3] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
We study the qualitative behavior of solutions to the Cauchy problem of a coupled system in (p, q) of parabolic conservation laws in one space dimension posed on R. This system arises from a Keller-Segel type repulsive model for chemotaxis with singular sensitivity and nonlinear production rate. In particular, we initiate the study of such models that correspond to a nonlinear production rate of g(p) = p(gamma) , where gamma > 1, in the regime when the ratio of chemical-to-cell diffusivity is of order epsilon, where epsilon > 0 denotes the chemical diffusion coefficient. By assuming H-1 initial data and utilizing energy methods, it is shown that regardless of the magnitude of initial data, there exist global-in-time solutions to the Cauchy problem, and the regularity of the solution depends on the specific values of gamma and epsilon. Moreover, the global asymptotic stability of constant ground states and the zero chemical diffusion limit (epsilon -> 0) of solutions are investigated.
机构:
Department of Mathematics, University of Rome ”Tor Vergata”, Via della ricerca scientifica n.1, RomaDepartment of Mathematics, University of Rome ”Tor Vergata”, Via della ricerca scientifica n.1, Roma
Bartolucci D.
Castorina D.
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento di Matematica, Università di Padova, Via Trieste 63, PadovaDepartment of Mathematics, University of Rome ”Tor Vergata”, Via della ricerca scientifica n.1, Roma
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Nanyang 637371, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Nanyang 637371, Singapore
Wang, Zhongjian
Xin, Jack
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USANanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Nanyang 637371, Singapore
Xin, Jack
Zhang, Zhiwen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Math, Pokfulam Rd, Hong Kong, Peoples R China
HKU SIRI, Mat Innovat Inst Life Sci & Energy MILES, Shenzhen, Peoples R ChinaNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Nanyang 637371, Singapore