Transfer Graph Neural Networks for Pandemic Forecasting

被引:0
|
作者
Panagopoulos, George [1 ]
Nikolentzos, Giannis [2 ]
Vazirgiannis, Michalis [1 ]
机构
[1] Ecole Polytech, Palaiseau, France
[2] Athens Univ Econ & Business, Athens, Greece
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recent outbreak of COVID-19 has affected millions of individuals around the world and has posed a significant challenge to global healthcare. From the early days of the pandemic, it became clear that it is highly contagious and that human mobility contributes significantly to its spread. In this paper, we utilize graph representation learning to capitalize on the underlying relationship of population movement with the spread of COVID-19. Specifically, we create a graph where the nodes correspond to a country's regions, the features include the region's history of COVID-19, and the edge weights denote human mobility from one region to another. Subsequently, we employ graph neural networks to predict the number of future cases, encoding the underlying diffusion patterns that govern the spread into our learning model. Furthermore, to account for the limited amount of training data, we capitalize on the pandemic's asynchronous outbreaks across countries and use a model-agnostic meta-learning based method to transfer knowledge from one country's model to another's. We compare the proposed approach against simple baselines and more traditional forecasting techniques in 4 European countries. Experimental results demonstrate the superiority of our method, highlighting the usefulness of GNNs in epidemiological prediction. Transfer learning provides the best model, highlighting its potential to improve the accuracy of the predictions in case of secondary waves, given data from past/parallel outbreaks.
引用
收藏
页码:4838 / 4845
页数:8
相关论文
共 50 条
  • [11] Graph ODE Recurrent Neural Networks for Traffic Flow Forecasting
    Su, Yuqiao
    Ren, Bin
    Zhang, Kunhua
    2022 IEEE 5TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING, ICECE, 2022, : 178 - 182
  • [12] Crowd Flow Forecasting with Multi-Graph Neural Networks
    Zhang, Xu
    Cao, Ruixu
    Zhang, Zuyu
    Xia, Ying
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [13] Reinforced Spatiotemporal Attentive Graph Neural Networks for Traffic Forecasting
    Zhou, Fan
    Yang, Qing
    Zhang, Kunpeng
    Trajcevski, Goce
    Zhong, Ting
    Khokhar, Ashfaq
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07) : 6414 - 6428
  • [14] Graph Convolutional Recurrent Neural Networks for Water Demand Forecasting
    Zanfei, Ariele
    Brentan, Bruno M.
    Menapace, Andrea
    Righetti, Maurizio
    Herrera, Manuel
    WATER RESOURCES RESEARCH, 2022, 58 (07)
  • [15] Traffic Forecasting with Spatio-Temporal Graph Neural Networks
    Shah, Shehal
    Doshi, Prince
    Mangle, Shlok
    Tawde, Prachi
    Sawant, Vinaya
    ARTIFICIAL INTELLIGENCE AND KNOWLEDGE PROCESSING, AIKP 2024, 2025, 2228 : 183 - 197
  • [16] Customizing Spatial-Temporal Graph Mamba Networks for Pandemic Forecasting
    Xu, Haowei
    Gao, Chao
    Li, Xianghua
    Wang, Zhen
    Jun, Tanimoto
    PRICAI 2024: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2025, 15281 : 236 - 242
  • [17] Graph Knowledge Transfer for Offensive Language Identification with Graph Neural Networks
    Huang, Yen-Hao
    Harryyanto, Kevin
    Tsai, Che-Wei
    Pornvattanavichai, Ratana
    Chen, Yi-Shin
    2022 IEEE 23RD INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2022), 2022, : 216 - 221
  • [18] GCTGNN: A forecasting method for time series based on graph neural networks and graph clustering
    Liu, Xin
    Meng, Yapeng
    Chen, Feng
    Qiao, Dengjian
    Wu, Fan
    NEUROCOMPUTING, 2025, 626
  • [19] Learning Graph Neural Networks for Image Style Transfer
    Jing, Yongcheng
    Mao, Yining
    Yang, Yiding
    Zhan, Yibing
    Song, Mingli
    Wang, Xinchao
    Tao, Dacheng
    COMPUTER VISION, ECCV 2022, PT VII, 2022, 13667 : 111 - 128
  • [20] Transfer Learning in Traffic Prediction with Graph Neural Networks
    Huang, Yunjie
    Song, Xiaozhuang
    Zhang, Shiyao
    Yu, James J. Q.
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 3732 - 3737