Soil organic carbon predictions in Subarctic Greenland by visible-near infrared spectroscopy

被引:10
|
作者
Ogric, M. [1 ,2 ]
Knadel, M. [3 ]
Kristiansen, S. M. [2 ]
Peng, Y. [3 ]
De Jonge, L. W. [3 ]
Adhikari, K. [4 ]
Greve, M. H. [3 ]
机构
[1] Univ Durham, Dept Geog, Sci Labs, Durham, England
[2] Aarhus Univ, Dept Geosci, Aarhus, Denmark
[3] Aarhus Univ, Dept Agroecol, Tjele, Denmark
[4] Univ Arkansas, Dept Crop Soil & Environm Sci, Fayetteville, AR 72701 USA
关键词
Soil organic carbon; visible-near-infrared spectroscopy; subarctic; Greenland; REFLECTANCE SPECTROSCOPY; NIR; VARIABILITY; LANDSCAPE; SPECTRA; MODELS; MATTER; REGRESSION; EROSION; SPIKING;
D O I
10.1080/15230430.2019.1679939
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Release of carbon from high-latitude soils to the atmosphere may have significant effects on Earth's climate. In this contribution, we evaluate visible-near-infrared spectroscopy (vis-NIRS) as a time- and cost-efficient tool for assessing soil organic carbon (SOC) concentrations in South Greenland. Soil samples were collected at two sites and analyzed with vis-NIRS. We used partial least square regression (PLS-R) modeling to predict SOC from vis-NIRS spectra referenced against in situ dry combustion measurements. The ability of our approach was validated in three setups: (1) calibration and validation data sets from the same location, (2) calibration and validation data sets from different locations, and (3) the same setup as in (2) with the calibration model enlarged with few samples from the opposite target area. Vis-NIRS predictions were successful in setup 1 (R-2 = 0.95, root mean square error of prediction [RMSEP] = 1.80 percent and R-2 = 0.82, RMSEP = 0.64 percent). Predictions in setup 2 had higher errors (R-2 = 0.90, RMSEP = 7.13 percent and R-2 = 0.78, RMSEP = 2.82 percent). In setup 3, the results were again improved (R-2 = 0.95, RMSEP = 2.03 percent and R-2 = 0.77, RMSEP = 2.14 percent). We conclude that vis-NIRS can obtain good results predicting SOC concentrations across two subarctic ecosystems, when the calibration models are augmented with few samples from the target site. Future efforts should be made toward determination of SOC stocks to constrain soil-atmosphere carbon exchange.
引用
收藏
页码:490 / 505
页数:16
相关论文
共 50 条
  • [41] Transcutaneous Assessment of Bone by Visible-Near Infrared Spectroscopy: A Pilot Study
    Querido, William
    Criner, Kristin E.
    Rao, Ajay D.
    Pleshko, Nancy
    JOURNAL OF BONE AND MINERAL RESEARCH, 2023, 38 : 118 - 118
  • [42] Application of visible-near infrared spectroscopy to evaluate the quality of button mushrooms
    Giovenzana, Valentina
    Tugnolo, Alessio
    Casson, Andrea
    Guidetti, Riccardo
    Beghi, Roberto
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2019, 27 (01) : 38 - 45
  • [43] Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey
    Bilgili, A. Volkan
    van Es, H. M.
    Akbas, F.
    Durak, A.
    Hively, W. D.
    JOURNAL OF ARID ENVIRONMENTS, 2010, 74 (02) : 229 - 238
  • [44] Estimating Soil Organic Carbon Content with Visible-Near-Infrared (Vis-NIR) Spectroscopy
    Gao, Yin
    Cui, Lijuan
    Lei, Bing
    Zhai, Yanfang
    Shi, Tiezhu
    Wang, Junjie
    Chen, Yiyun
    He, Hui
    Wu, Guofeng
    APPLIED SPECTROSCOPY, 2014, 68 (07) : 712 - 722
  • [45] Detecting the temporal trend of cultivated soil organic carbon content using visible near infrared spectroscopy
    Zayani, Hayfa
    Fouad, Youssef
    Michot, Didier
    Kassouk, Zeineb
    Lili-Chabaane, Zohra
    Walter, Christian
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2023, 31 (05) : 241 - 255
  • [46] Prediction of soil organic carbon stock using visible and near infrared reflectance spectroscopy (VNIRS) in the field
    Cambou, Aurelie
    Cardinael, Remi
    Kouakoua, Ernest
    Villeneuve, Manon
    Durand, Celine
    Barthes, Bernard G.
    GEODERMA, 2016, 261 : 151 - 159
  • [47] Rapid Prediction of Total Organic Carbon Content and CEC in Soil Using Visible/Near Infrared Spectroscopy
    Fang Li-min
    Feng Ai-ming
    Lin Min
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30 (02) : 327 - 330
  • [48] Estimation of Clay and Soil Organic Carbon Using Visible and Near-Infrared Spectroscopy and Unground Samples
    Wang, Changkun
    Pan, Xianzhang
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2016, 80 (05) : 1393 - 1402
  • [49] Laboratory Spectroscopy Assessments of Rainfed Paddy Soil Samples on Visible and Near-Infrared Spectroscopy Reflectance for Estimating Soil Organic Carbon
    Homhuan, Sakda
    Pansak, Wanwisa
    Lawawirojwong, Siam
    Narongrit, Chada
    AIR SOIL AND WATER RESEARCH, 2016, 9 : 77 - 85
  • [50] Predicting soil properties from the Australian soil visible-near infrared spectroscopic database
    Rossel, R. A. Viscarra
    Webster, R.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2012, 63 (06) : 848 - 860