A machine learning approach to predict production time using real-time RFID data in industrialized building construction

被引:25
|
作者
Mohsen, Osama [1 ]
Mohamed, Yasser [1 ]
Al-Hussein, Mohamed [1 ]
机构
[1] Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB T6G 1H9, Canada
关键词
Industrialized building construction; Prefabricated construction; Production time; Time prediction; RFID; Machine learning; KNOWLEDGE DISCOVERY; REGRESSION; INDUSTRY;
D O I
10.1016/j.aei.2022.101631
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Industrialized building construction is an approach that integrates manufacturing techniques into construction projects to achieve improved quality, shortened project duration, and enhanced schedule predictability. Time savings result from concurrently carrying out factory operations and site preparation activities. In an industrialized building construction factory, the accurate prediction of production cycle time is crucial to reap the advantage of improved schedule predictability leading to enhanced production planning and control. With the large amount of data being generated as part of the daily operations within such a factory, the present study proposes a machine learning approach to accurately estimate production time using (1) the physical characteristics of building components, (2) the real-time tracking data gathered using a radio frequency identification system, and (3) a set of engineered features constructed to capture the real-time loading conditions of the job shop. The results show a mean absolute percentage error and correlation coefficient of 11% and 0.80, respectively, between the actual and predicted values when using random forest models. The results confirm the significant effects of including shop utilization features in model training and suggest that predicting production time can be reasonably achieved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Real-time traffic congestion prediction using big data and machine learning techniques
    Chawla, Priyanka
    Hasurkar, Rutuja
    Bogadi, Chaithanya Reddy
    Korlapati, Naga Sindhu
    Rajendran, Rajasree
    Ravichandran, Sindu
    Tolem, Sai Chaitanya
    Gao, Jerry Zeyu
    WORLD JOURNAL OF ENGINEERING, 2024, 21 (01) : 140 - 155
  • [32] Elephant–railway conflict minimisation using real-time video data and machine learning
    Dutta S.
    Paul A.
    Chakraborty D.
    Rao G.S.
    Journal of Reliable Intelligent Environments, 2021, 7 (04) : 315 - 324
  • [33] Real-Time Structure Generation Based on Data-Driven Using Machine Learning
    Wang, Ying
    Shi, Feifei
    Chen, Bingbing
    PROCESSES, 2023, 11 (03)
  • [34] A novel machine learning inspired algorithm to predict real-time network intrusions
    Srinivas K.
    Prasanth N.
    Trivedi R.
    Bindra N.
    Raja S.P.
    International Journal of Information Technology, 2022, 14 (7) : 3471 - 3480
  • [35] Real-Time RFID Localization Using RSS
    Chawla, Kirti
    McFarland, Christopher
    Robins, Gabriel
    Shope, Connor
    2013 INTERNATIONAL CONFERENCE ON LOCALIZATION AND GNSS (ICL-GNSS), 2013,
  • [36] Real-Time Lithology Prediction at the Bit Using Machine Learning
    Burak, Tunc
    Sharma, Ashutosh
    Hoel, Espen
    Kristiansen, Tron Golder
    Welmer, Morten
    Nygaard, Runar
    GEOSCIENCES, 2024, 14 (10)
  • [37] Real-time particle pollution sensing using machine learning
    Grant-Jacob, James A.
    Mackay, Benita S.
    Baker, James A. G.
    Heath, Daniel J.
    Xie, Yunhui
    Loxham, Matthew
    Eason, Robert W.
    Mills, Ben
    OPTICS EXPRESS, 2018, 26 (21): : 27237 - 27246
  • [38] Real-time Tweets Analysis using Machine Learning and Bigdata
    Reddy, P Nandieswar
    Sai Aswath, S.
    Alapati, Rithvika
    Radha, D.
    Proceedings of NKCon 2024 - 3rd Edition of IEEE NKSS's Flagship International Conference: Digital Transformation: Unleashing the Power of Information, 2024,
  • [39] Real-Time Collaborative Filtering Using Extreme Learning Machine
    Deng, Wanyu
    Zheng, Qinghua
    Chen, Lin
    2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, 2009, : 466 - +
  • [40] Real-Time Slip Detection and Control Using Machine Learning
    Pereira Tavares, Alexandre Henrique
    Oliveira, S. R. J.
    XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, 2022, : 1363 - 1369