Stationary Scattering Theory for One-body Stark Operators, II

被引:0
|
作者
Ito, K. [1 ]
Skibsted, E. [2 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Aarhus Univ, Inst Matematiske Fag, DK-8000 Aarhus C, Denmark
来源
ANNALES HENRI POINCARE | 2022年 / 23卷 / 02期
基金
瑞典研究理事会;
关键词
D O I
10.1007/s00023-021-01101-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study and develop the stationary scattering theory for a class of one-body Stark Hamiltonians with short-range potentials, including the Coulomb potential, continuing our study in Adachi et al. (JDE 268: 5179-5206, 2020; Stationary scattering theory for 1-body Stark operators). The classical scattering orbits are parabolas parametrized by asymptotic orthogonal momenta, and the kernel of the (quantum) scattering matrix at a fixed energy is defined in these momenta. We show that the scattering matrix is a classical type pseudodifferential operator and compute the leading order singularities at the diagonal of its kernel. Our approach can be viewed as an adaption of the method of Isozaki-Kitada (Tokyo Univ. 35: 81-107, 1985) used for studying the scattering matrix for one-body Schrodinger operators without an external potential. It is more flexible and more informative than the more standard method used previously by Kvitsinsky-Kostrykin (Teoret. Mat. Fiz. 75(3): 416-430, 1988) for computing the leading order singularities of the kernel of the scattering matrix in the case of a constant external field (the Stark case). Our approach relies on Sommerfeld's uniqueness result in Besov spaces, microlocal analysis as well as on classical phase space constructions.
引用
收藏
页码:513 / 548
页数:36
相关论文
共 50 条
  • [31] FLUCTUATIONS IN ONE-BODY DYNAMICS
    RANDRUP, J
    REMAUD, B
    NUCLEAR PHYSICS A, 1990, 514 (02) : 339 - 366
  • [32] ONE-BODY NUCLEAR FRICTION
    PAL, S
    GROSS, DHE
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1988, 329 (03): : 349 - 356
  • [33] THEORY OF PHASE-FACTORS FOR A ONE-BODY POTENTIAL OF ARBITRARY SYMMETRY
    KOZLOWSKI, PM
    MARCH, NH
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1990, 63 : 373 - 378
  • [34] ON THE EVALUATION OF THE U(3) CONTENT OF THE MATRIX-ELEMENTS OF ONE-BODY AND 2-BODY OPERATORS
    VANAGAS, V
    ALCARAS, JAC
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (04) : 1550 - 1565
  • [35] Stationary scattering theory for unitary operators with an application to quantum walks
    Tiedra de Aldecoa, R.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
  • [36] Quantum approach to one-body dissipation
    Rizea, M.
    Carjan, N.
    GAMMA-1 EMISSION OF PROMPT GAMMA-RAYS IN FISSION AND RELATED TOPICS, 2012, 31 : 78 - 83
  • [37] Multifragmentation with Brownian one-body dynamics
    Guarnera, A
    Chomaz, P
    Colonna, M
    Randrup, J
    PHYSICS LETTERS B, 1997, 403 (3-4) : 191 - 196
  • [38] BROWNIAN ONE-BODY DYNAMICS IN NUCLEI
    CHOMAZ, P
    COLONNA, M
    GUARNERA, A
    RANDRUP, J
    PHYSICAL REVIEW LETTERS, 1994, 73 (26) : 3512 - 3515
  • [39] Quantum localization in one-body dissipation
    Abal, G
    Romanelli, A
    Schifino, ACS
    Siri, R
    Donangelo, R
    NUCLEAR PHYSICS A, 1998, 643 (01) : 30 - 38
  • [40] FLUCTUATIONS OF THE ONE-BODY DISTRIBUTION FUNCTION
    BONASERA, A
    GULMINELLI, F
    SCHUCK, P
    PHYSICAL REVIEW C, 1992, 46 (04): : 1431 - 1436