Online Measurement Error Detection for the ElectronicTransformer in a Smart Grid

被引:10
|
作者
Xiong, Gu [1 ]
Przystupa, Krzysztof [2 ]
Teng, Yao [1 ]
Xue, Wang [1 ]
Huan, Wang [1 ]
Feng, Zhou [3 ]
Qiong, Xiang [1 ]
Wang, Chunzhi [4 ]
Skowron, Mikolaj [5 ]
Kochan, Orest [4 ,6 ]
Beshley, Mykola [6 ]
机构
[1] China Elect Power Res Inst, Wuhan 430000, Peoples R China
[2] Lublin Univ Technol, Dept Automat, Nadbystrzycka 36, PL-20618 Lublin, Poland
[3] State Grid Chongqing Elect Power Co Mkt Serv Ctr, Chongqing 400015, Peoples R China
[4] Hubei Univ Technol, Sch Comp Sci, Wuhan 430000, Peoples R China
[5] AGH Univ Sci & Technol, Dept Elect & Power Engn, A Mickiewicza 30, PL-30059 Krakow, Poland
[6] Lviv Polytech Natl Univ, Dept Telecommun, Bandery 12, UA-79013 Lvov, Ukraine
基金
中国国家自然科学基金;
关键词
smart grid; transformer error prediction; attention mechanism; long short-term memory network; Seq2Seq network; SYSTEM; TRANSFORMERS; CALIBRATION; NETWORKS; INTERNET;
D O I
10.3390/en14123551
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the development of smart power grids, electronic transformers have been widely used to monitor the online status of power grids. However, electronic transformers have the drawback of poor long-term stability, leading to a requirement for frequent measurement. Aiming to monitor the online status frequently and conveniently, we proposed an attention mechanism-optimized Seq2Seq network to predict the error state of transformers, which combines an attention mechanism, Seq2Seq network, and bidirectional long short-term memory networks to mine the sequential information from online monitoring data of electronic transformers. We implemented the proposed method on the monitoring data of electronic transformers in a certain electric field. Experiments showed that our proposed attention mechanism-optimized Seq2Seq network has high accuracy in the aspect of error prediction.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Using Implications for Online Error Detection
    Nepal, K.
    Alves, N.
    Dworak, J.
    Bahar, R. I.
    2008 IEEE INTERNATIONAL TEST CONFERENCE, VOLS 1 AND 2, PROCEEDINGS, 2008, : 611 - +
  • [32] Online data reconciliation and error detection
    Albers, JE
    HYDROCARBON PROCESSING, 1997, 76 (07): : 101 - &
  • [33] Broadband Methods for Online Grid Impedance Measurement
    Roinila, Tomi
    Vilkko, Matti
    Sun, Jian
    2013 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2013, : 3003 - 3010
  • [34] Empowering smart city through smart grid communication and measurement technology
    Mohanty, Asit
    Mohanty, Sthitapragyan
    Satapathy, Abhay Sanatan
    Soudagar, Manzoore Elahi M.
    Shahapurkar, Kiran
    Cuce, Erdem
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2025, 20 : 404 - 420
  • [35] Online Model-Free Cyber Attack Detection in Smart Grid Using Dynamic Mode Decomposition
    Mobini, Ehsan
    Abolmasoumi, Amir Hossein
    Daeichian, Abolghasem
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (05): : 4305 - 4314
  • [36] DETECTION AND CORRECTION FOR MEASUREMENT ERROR
    LANE, DW
    SAE TRANSACTIONS, 1966, 74 : 158 - &
  • [37] A novel online detection method of data injection attack against dynamic state estimation in smart grid
    Chen, Rui
    Li, Xue
    Zhong, Huixin
    Fei, Minrui
    NEUROCOMPUTING, 2019, 344 : 73 - 81
  • [38] Smart home management with online power measurement
    Dubey, Rahul
    Nath, Sasikal
    Harsha, K.
    VInay, D. Rama Sai
    Bayya, Madhuri
    Rao, B. V. S. S. N. Prabhakara
    Rao, U. M.
    Muthukrishnan, N. Moorthy
    2016 IEEE REGION 10 HUMANITARIAN TECHNOLOGY CONFERENCE (R10-HTC), 2016,
  • [39] Detection of Replay Attacks in Smart Grid Systems
    Tran, Thien-Toan
    Shin, Oh-Soon
    Lee, Jong-Ho
    2013 INTERNATIONAL CONFERENCE ON COMPUTING, MANAGEMENT AND TELECOMMUNICATIONS (COMMANTEL), 2013, : 298 - 302
  • [40] Intrusion Detection on Critical Smart Grid Infrastructure
    Akbarian, Fatemeh
    Ramezani, Amin
    Hamidi-Beheshti, Mohammad-Taghi
    Haghighat, Vahid
    2018 SMART GRID CONFERENCE (SGC), 2018, : 255 - 260