Low-Reynolds-Number Flowfield of Wing with Control Surface in Propeller Slipstream

被引:7
|
作者
Ikami, Tsubasa [1 ]
Fujita, Koji [2 ]
Nagai, Hiroki [2 ]
机构
[1] Tohoku Univ, Inst Fluid Sci, Grad Sch Aerosp Engn, Dept Aerosp Engn, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Inst Fluid Sci, Sendai, Miyagi 9808577, Japan
来源
JOURNAL OF AIRCRAFT | 2021年 / 58卷 / 02期
基金
日本学术振兴会;
关键词
BOUNDARY-LAYER; TRANSITION; AIRFOIL; FLOW; WAKE;
D O I
10.2514/1.C035880
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
An experimental study is conducted on a NACA 0012 airfoil with a control surface to investigate the influence of a propeller slipstream under a low-Reynolds-number condition. To investigate the influence of the propeller slipstream on a wing surface, the flowfield on the wing surface is visualized using a temperature-sensitive paint when the chord-based Reynolds number is equal to 3.0 x 10(4). The control surface performance improves in the installed-propeller condition because the propeller slipstream suppresses the laminar separation bubble. Finally, we suggest that the propeller should be installed ahead of the control surface to benefit from the effect of the propeller slipstream under the low-Reynolds-number flight condition.
引用
收藏
页码:228 / 235
页数:8
相关论文
共 50 条
  • [21] Low-Reynolds-number separation on an airfoil
    Lin, JCM
    Pauley, LL
    AIAA JOURNAL, 1996, 34 (08) : 1570 - 1577
  • [22] Efficient Low-Reynolds-Number Airfoils
    Traub, Lance W.
    Coffman, Cory
    JOURNAL OF AIRCRAFT, 2019, 56 (05): : 1987 - 2003
  • [23] Scattering of low-Reynolds-number swimmers
    Alexander, G. P.
    Pooley, C. M.
    Yeomans, J. M.
    PHYSICAL REVIEW E, 2008, 78 (04):
  • [24] Effects of Propeller Position and Rotation Direction on the Ishii Wing at a Low Reynolds Number
    Fujita, Koji
    Kurane, Kakeru
    Takahashi, Koichi
    Nagai, Hiroki
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2021, 64 (01) : 22 - 30
  • [25] Numerical Predictions of Low-Reynolds-Number Propeller Aeroacoustics: Comparison of Methods at Different Fidelity Levels
    Huang, Guangyuan
    Sharma, Ankit
    Chen, Xin
    Riaz, Atif
    Jefferson-Loveday, Richard
    AEROSPACE, 2025, 12 (02)
  • [26] Design of Supercritical Low-Reynolds-Number Airfoils for Fixed-Wing Flight on Mars
    Sugar-Gabor, Oliviu
    Koreanschi, Andreea
    JOURNAL OF AEROSPACE ENGINEERING, 2020, 33 (05)
  • [27] Nanoparticle migration on the microchannel wall surface in low-Reynolds-number nanofluids
    Ko, Seongjun
    Lee, Junho
    Yu, Jiwon
    Banerjee, Debjyoti
    Kang, Seok-Won
    AIP ADVANCES, 2024, 14 (06)
  • [28] Complex magnetohydrodynamic low-Reynolds-number flows
    Xiang, Y
    Bau, HH
    PHYSICAL REVIEW E, 2003, 68 (01):
  • [29] Effect of Tip Vortices in Low-Reynolds-Number Poststall Flow Control
    Taira, Kunihiko
    Colonius, Tim
    AIAA JOURNAL, 2009, 47 (03) : 749 - 756
  • [30] Low-Reynolds-number rising of a bubble near a free surface at vanishing Bond number
    Guemas, Marine
    Sellier, Antoine
    Pigeonneau, Franck
    PHYSICS OF FLUIDS, 2016, 28 (06)