In this paper, characteristics of the interface crack-tip stress and electric displacement fields in transversely isotropic piezoelectric bimaterials are studied. The authors have proven, within the framework of the generalized Stroh formalism for piezoelectric bimaterials, that there is no coexistence of the parameters epsilon (oscillating) and kappa (non-oscillating) in the interface crack-tip generalized stress field for all transversely isotropic piezoelectric bimaterials. This leads to the classification of piezoelectric bimaterials into one group that exhibits the oscillating property in the interface crack-tip generalized stress field and the other that does not. Fifteen (15) pair-combinations of six (6) piezoelectric materials PZT-4, PZT-5H, PZT-6B, PZT-7A, P-7, and BaTiO3, which are commonly used in practice, are numerically analyzed in this study, and the results backup the above theoretical conclusions. Moreover, the associated eigenvectors for such material systems (with either epsilon = 0 or kappa = 0) are also obtained numerically, and the result show that there still exist four linear independent associate eigenvectors for each bimaterial. (C) 2003 Elsevier Ltd. All rights reserved.