GROWTH AND PRODUCTIVITY OF SOYBEAN (GLYCINE MAX (L.) MERR.) GENOTYPES UNDER SHADING

被引:2
|
作者
Wahyuningsih, S. [1 ]
Sundari, T. [1 ]
Sutrisno [1 ]
Harnowo, D. [1 ]
Harsono, A. [1 ]
Soehendi, R. [1 ]
Mejaya, M. J. [1 ]
机构
[1] Indonesian Legumes & Tuber Crops Res Inst ILETRI, Jl Raya Kendalpayak Km 8,POB 66, Malang 65101, East Java, Indonesia
来源
关键词
intercropping; leaf area; net assimilation; stress intensity; tolerant; LIGHT ENRICHMENT; LEAF ANATOMY; TOLERANCE; RESPONSES; PLANTS; AREA;
D O I
10.15666/aeer/1905_33773392
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The research was aimed to determine the growth of soybean genotypes under shading. This Research was conducted in Malang, East Java, Indonesia. Treatments entailed of two factors, namely level of shading and soybean genotypes, arranged in factorial randomized complete block design with three replications. Level shading entailed of without shading and 50% shading, while soybean genotypes included of Argopuro, Dena 1, Dena 2, Dena 3, Grobogan, Panderman, and Karat 13. The results indicated that the soybean genotype responses to shading were different. Shading reduced leaf area index (LAI), net assimilation rate (NAR), and plant growth rate (PGR), however it increased the specific leaf area (SLA) and leaf area ratio (LAR Dena 1 genotype showed the lowest PGR stress intensity at 6%, followed by Panderman (16%) which are below the average of genotypes stress intensity at 56 DAP (24%). The PGR had significantly positive correlation with seed yield. The average decrease in seed yields of 7 soybean genotypes were 32%, and Dena 1 showed the most tolerant to shading. This proved wih the fact that of Dena 1 which is currently widely planted by the farmers in Indonesia on an intercropping pattern, or under shading of young plantation crops.
引用
收藏
页码:3377 / 3392
页数:16
相关论文
共 50 条
  • [31] Effect of Vacuum Soaking on the Properties of Soybean (Glycine max (L.) Merr.)
    Xiao, Gongnian
    Gong, Jinyan
    Ge, Qing
    You, Yuru
    INTERNATIONAL JOURNAL OF FOOD ENGINEERING, 2015, 11 (01) : 151 - 155
  • [32] Molecular Characterization of Magnesium Chelatase in Soybean [Glycine max (L.) Merr.]
    Zhang, Dan
    Chang, Enjie
    Yu, Xiaoxia
    Chen, Yonghuan
    Yang, Qinshuai
    Cao, Yanting
    Li, Xiukun
    Wang, Yuhua
    Fu, Aigen
    Xu, Min
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [33] Endophytic fungi of soybean (Glycine max (L.) Merr.) and their potential applications
    Abdelmagid, Ahmed
    Hou, Anfu
    Wijekoon, Champa
    CANADIAN JOURNAL OF PLANT SCIENCE, 2024, 104 (01) : 32 - 40
  • [34] Phytochemical constituents from the leaves of soybean [Glycine max (L.) merr.]
    Lee, Jin Hwan
    Baek, In-Youl
    Choung, Myoung-Gun
    Ha, Tae Joung
    Han, Won-Young
    Cho, Kye Man
    Ko, Jong-Min
    Jeong, Seong Hun
    Oh, Ki-Won
    Park, Keum-Yong
    Park, Ki Hun
    FOOD SCIENCE AND BIOTECHNOLOGY, 2008, 17 (03) : 578 - 586
  • [35] Evaluation of Soybean [Glycine max (L.) Merr.] F(1 )Hybrids
    Perez, Paola T.
    Cianzio, Silvia R.
    Palmer, Reid G.
    JOURNAL OF CROP IMPROVEMENT, 2009, 23 (01) : 1 - 18
  • [36] Evaluation of soybean [Glycine max (L.) Merr.] genotypes for yield, water use efficiency, and root traits
    Fried, Harrison Gregory
    Narayanan, Sruthi
    Fallen, Benjamin
    PLOS ONE, 2019, 14 (02):
  • [37] Nitrogen fixation and nitrate metabolism for growth of six diverse soybean [Glycine max. (L.) Merr.] genotypes under low temperature stress
    Zhang, F
    Dijak, M
    Smith, DL
    Lin, J
    Walsh, K
    Voldeng, H
    Macdowell, F
    Layzell, DB
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 1997, 38 (01) : 49 - 60
  • [38] Regulation of brassinosteroid on pod growth through cell hypertrophy in soybean (Glycine max (L.) Merr.)
    Ariyoshi, Yuri
    Itoyama, Haruka
    Nakagawa, Andressa C. S.
    Ario, Nobuyuki
    Kondo, Yukari
    Tomita, Yuki
    Tanaka, Seiya
    Nakashima, Megumi
    Tomioka, Kanji
    Iwaya-Inoue, Mari
    Ishibashi, Yushi
    PLANT GROWTH REGULATION, 2016, 80 (03) : 391 - 395
  • [39] Regulation of brassinosteroid on pod growth through cell hypertrophy in soybean (Glycine max (L.) Merr.)
    Yuri Ariyoshi
    Haruka Itoyama
    Andressa C. S. Nakagawa
    Nobuyuki Ario
    Yukari Kondo
    Yuki Tomita
    Seiya Tanaka
    Megumi Nakashima
    Kanji Tomioka
    Mari Iwaya-Inoue
    Yushi Ishibashi
    Plant Growth Regulation, 2016, 80 : 391 - 395
  • [40] Characteristics of growth and yield formation in the improved genotype of supernodulating soybean (Glycine max L. Merr.)
    Takahashi, M
    Arihara, J
    Nakayama, N
    Kokubun, M
    PLANT PRODUCTION SCIENCE, 2003, 6 (02) : 112 - 118