Global optimization method for Min-Max MPC based on Wiener and Hammerstein model

被引:0
|
作者
Degachi, Hajer [1 ]
Chagra, Wassila [2 ]
Ksouri, Moufida [1 ]
机构
[1] Tunis El Manar Univ, Natl Engn Sch Tunis, LR11ES20, Anal Concept & Control Syst Lab, Tunis, Tunisia
[2] Tunis El Manar Univ, El Manar Preparatory Inst Engn Studies, LR11ES20, Anal Concept & Control Syst Lab, Tunis, Tunisia
关键词
robust model predictive control; global optimization; generalized geometric programming method; Wiener model; Hammerstein model;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the present work, a global optimization method known as the Generalized Geometric Programming (GGP) is used. The technique of convexification used in the present work is different from others presented in earlier works. The presented GGP allows to obtain the global optimum by few transformation applied to the original optimization problem. But for the other convexification technique many constraints will be taken into account to get the convex criterion. The GGP method allows to compute the optimal control sequence over a prediction horizon. The obtained sequence of input control is the solution of a min-max optimization problem. Hammerstein and Wiener models are presented where bounded uncertainties are considered with respect to parameters of the linear bloc. The efficiency of the GGP method is demonstrated through a simulation example.
引用
收藏
页码:698 / 703
页数:6
相关论文
共 50 条
  • [1] Min-Max MPC based on a network problem
    Alamo, T.
    de la Pena, D. Munoz
    Camacho, E. R.
    SYSTEMS & CONTROL LETTERS, 2008, 57 (02) : 184 - 192
  • [2] Global Optimization: On Pathlengths in Min-Max Graphs
    HARALD GÜNZEL
    HUBERTUS TH. Jongen
    Journal of Global Optimization, 2000, 17 : 161 - 165
  • [3] Global optimization:: On pathlengths in min-max graphs
    Günzel, H
    Jongen, HT
    JOURNAL OF GLOBAL OPTIMIZATION, 2000, 17 (1-4) : 161 - 165
  • [4] Handling the Constraints in Min-Max MPC
    Hu, Jianchen
    Lv, Xiaoliang
    Pan, Hongguang
    Zhang, Meng
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (01) : 296 - 304
  • [5] Computational burden reduction in min-max MPC
    Ramirez, D. R.
    Alamo, T.
    Camacho, E. F.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (09): : 2430 - 2447
  • [6] Nonlinear optimization: on the min-max digraph and global smoothing
    Jongen, HT
    Jhones, AR
    CALCULUS OF VARIATIONS AND DIFFERENTIAL EQUATIONS, 2000, 410 : 119 - 135
  • [7] Min-max and min-max regret versions of combinatorial optimization problems: A survey
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (02) : 427 - 438
  • [8] Min-max formulation of the balance number in multiobjective global optimization
    Ehrgott, M
    Galperin, EA
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (07) : 899 - 907
  • [9] Min-max Differential Inequalities for Polytopic Tube MPC
    Feng, Xuhui
    Hu, Haimin
    Villanueva, Mario E.
    Houska, Boris
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 1170 - 1174
  • [10] Min-max MPC using a tractable QP problem
    Alamo, T.
    Ramirez, D. R.
    de la Pena, D. Munoz
    Camacho, E. F.
    AUTOMATICA, 2007, 43 (04) : 693 - 700