Levenberg-Marquardt method for solving systems of absolute value equations

被引:56
|
作者
Iqbal, Javed [1 ]
Iqbal, Asif [2 ]
Arif, Muhammad [3 ]
机构
[1] COMSATS Inst Informat Technol, Dept Math, Islamabad, Pakistan
[2] Virtual Univ, Dept Comp Sci, Lahore, Punjab, Pakistan
[3] Abdul Wali Khan Univ Mardan, Dept Math, Kpk, Pakistan
关键词
Absolute value equations; Levenberg-Marquardt method; Goldstein line search;
D O I
10.1016/j.cam.2014.11.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we suggest and analyze the Levenberg-Marquardt method for solving system of absolute value equations Ax - vertical bar x vertical bar = b, where A is an element of R-nxn, b is an element of R-n and x is an element of R-n are unknown. We present different line search methods to convey the main idea and the significant modifications. We discuss the convergence of the proposed method. We consider numerical examples to illustrate the implementation and efficiency of the method. Results are very encouraging and may stimulate further research in this direction. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:134 / 138
页数:5
相关论文
共 50 条
  • [31] A globally convergent Levenberg-Marquardt method for solving nonlinear complementarity problem
    Ma, Changfeng
    Tang, Jia
    Chen, Xiaohong
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 192 (02) : 370 - 381
  • [32] A Levenberg-Marquardt method with approximate projections
    Behling, R.
    Fischer, A.
    Herrich, M.
    Iusem, A.
    Ye, Y.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 59 (1-2) : 5 - 26
  • [33] A smoothing Levenberg-Marquardt method for NCP
    Zhang, Ju-liang
    Zhang, Xiangsun
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 178 (02) : 212 - 228
  • [34] A Levenberg-Marquardt Method for Tensor Approximation
    Zhao, Jinyao
    Zhang, Xuejuan
    Zhao, Jinling
    SYMMETRY-BASEL, 2023, 15 (03):
  • [35] On the convergence properties of the Levenberg-Marquardt method
    Zhang, JL
    OPTIMIZATION, 2003, 52 (06) : 739 - 756
  • [36] A Levenberg-Marquardt method with approximate projections
    R. Behling
    A. Fischer
    M. Herrich
    A. Iusem
    Y. Ye
    Computational Optimization and Applications, 2014, 59 : 5 - 26
  • [37] Levenberg-Marquardt method for ANFIS learning
    Jang, JSR
    Mizutani, E
    1996 BIENNIAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1996, : 87 - 91
  • [38] Convergence analysis of the Levenberg-Marquardt method
    Luo, Xin-Long
    Liao, Li-Zhi
    Tam, Hon Wah
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (04): : 659 - 678
  • [39] Trust Region Levenberg-Marquardt Method for Linear SVM Trust Region Levenberg-Marquardt Method for Linear SVM
    Chauhan, Vinod Kumar
    Dahiya, Kalpana
    Sharma, Anuj
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2017, : 380 - 385
  • [40] The Levenberg-Marquardt method and its modified versions for solving nonlinear equations with application to the inverse gravimetry problem
    Vasin, V. V.
    Perestoronina, G. Ya
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 280 : 174 - 182