Electro-osmotic flow in porous media using magnetic resonance imaging

被引:12
|
作者
Locke, BR [1 ]
Acton, M
Gibbs, SJ
机构
[1] Florida State Univ, Coll Engn, FAMU, Dept Chem Engn, Tallahassee, FL 32310 USA
[2] Florida State Univ, Natl High Magnet Field Lab, Ctr Interdisciplinary Magnet Resonance, Tallahassee, FL 32310 USA
关键词
D O I
10.1021/la0016928
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetic resonance imaging (MRI) has been used to study electro-osmotic flow in a porous medium consisting of spherical glass particles ranging from 2.0 to 4.0 min in diameter. Electrodes placed at each end of a 1-cm glass tube containing the spheres and solution were used to generate flow. Pulsed field gradient MRI at 500 and 600 MHz was used to measure the fluid velocity fields and provided in-plane image resolution of approximately 78 x 78 mum(2) for 100 mum thick slices. Velocity fields as functions of applied voltage were measured for four cases: (1) empty tube with open ends, (2) empty tube with closed ends, (3) tube with packing and closed ends, and (4) tube with packing and open ends. Both closed-tube systems showed recirculation; in the closed tube with particles, recirculation occurred over the length scale of a single particle. The standard deviation or spread of the velocity distribution for the closed-tube experiments scaled approximately linearly with increasing applied voltage, while the velocity mean remained approximately zero. In the open-tube system, both the mean velocity and the standard deviation of the velocity distribution scaled linearly with the applied voltage. Detailed analyses of the velocity distribution histograms show discrepancies with predictions of the bundled-capillary tube, model of electro-osmotic flow in porous media.
引用
收藏
页码:6771 / 6781
页数:11
相关论文
共 50 条
  • [21] Flow and diffusion measurements in natural porous media using magnetic resonance imaging
    Baumann, T
    Petsch, R
    Fesl, G
    Niessner, R
    JOURNAL OF ENVIRONMENTAL QUALITY, 2002, 31 (02) : 470 - 476
  • [22] Dissimilar electro-osmotic flow and ionic current recirculation patterns in porous media detected by NMR mapping experiments
    Buhai, B
    Kimmich, R
    PHYSICAL REVIEW LETTERS, 2006, 96 (17)
  • [23] LBM Simulation of Electro-Osmotic Flow (EOF) in Nano/Micro scales Porous Media with an Inclusive Parameters Study
    Zakeri, Ramin
    Lee, Eon Soo
    Salimi, Mohammad Reza
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 7, 2015,
  • [24] Imaging of water flow in porous media by magnetic resonance imaging microscopy
    Deurer, M
    Vogeler, I
    Khrapitchev, A
    Scotter, D
    JOURNAL OF ENVIRONMENTAL QUALITY, 2002, 31 (02) : 487 - 493
  • [25] Effectiveness of flow obstructions in enhancing electro-osmotic flow
    Di Fraia, S.
    Massarotti, N.
    Nithiarasu, P.
    MICROFLUIDICS AND NANOFLUIDICS, 2017, 21 (03)
  • [26] Effectiveness of flow obstructions in enhancing electro-osmotic flow
    S. Di Fraia
    N. Massarotti
    P. Nithiarasu
    Microfluidics and Nanofluidics, 2017, 21
  • [27] Suppression of Electro-Osmotic Flow by Surface Roughness
    Messinger, R. J.
    Squires, T. M.
    PHYSICAL REVIEW LETTERS, 2010, 105 (14)
  • [28] Electro-osmotic flows through topographically complicated porous media: Role of electropermeability tensor
    Bandopadhyay, Aditya
    DasGupta, Debabrata
    Mitra, Sushanta K.
    Chakraborty, Suman
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [29] Study of electro-osmotic flow in microfluldic devices
    Sabur, Romena
    Matin, M. A.
    2006 3RD IEEE/EMBS INTERNATIONAL SUMMER SCHOOL ON MEDICAL DEVICES AND BIOSENSORS, 2006, : 126 - +
  • [30] Electro-osmotic flow of semidilute polyelectrolyte solutions
    Uematsu, Yuki
    Araki, Takeaki
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (09):