Wall-crossing of D4-branes using flow trees

被引:35
|
作者
Manschot, Jan [1 ]
机构
[1] CEA Saclay, Inst Phys Theor, CNRS URA 2306, F-91191 Gif Sur Yvette, France
关键词
MODULI SPACE; STABLE SHEAVES; BETTI NUMBERS; RANK-2;
D O I
10.4310/ATMP.2011.v15.n1.a1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The moduli dependence of D4-branes on a Calabi-Yau manifold is studied using attractor flow trees, in the large volume limit of the Kahler cone. One of the moduli-dependent existence criteria of flow trees is the positivity of the flow parameters along its edges. It is shown that the sign of the flow parameters can be determined iteratively as function of the initial moduli, without explicit calculation of the flow of the moduli in the tree. Using this result, an indefinite quadratic form, which appears in the expression for the D4-D2-D0 BPS mass in the large volume limit, is proven to be positive definite for flow trees with 3 or less endpoints. The contribution of these flow trees to the BPS partition function is therefore convergent. From non-primitive wall-crossing is deduced that the S-duality invariant partition function must be a generating function of the rational invariants (Omega) over bar(Gamma) = Sigma(m vertical bar Gamma) Omega(Gamma/m)/m(2) instead of the integer invariants Omega(Gamma).
引用
收藏
页码:1 / 42
页数:42
相关论文
共 50 条
  • [41] Chiral vortical effect from the compactified D4-branes with smeared D0-brane charge
    Wu, Chao
    Chen, Yidian
    Huang, Mei
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, 2017 (03)
  • [42] Yang-Mills instantons sitting on a Ricci-flat worldspace of double D4-branes
    Kim, H
    Yoon, Y
    PHYSICAL REVIEW D, 2001, 63 (12)
  • [43] Hilbert schemes of points on Calabi-Yau 4-folds via wall-crossing
    Bojko, Arkadij
    ADVANCES IN MATHEMATICS, 2024, 448
  • [44] New instantons in AdS4/CFT3 from D4-branes wrapping some of CP3
    Naghdi, M.
    PHYSICAL REVIEW D, 2013, 88 (02):
  • [45] Birational geometry for d-critical loci and wall-crossing in Calabi-Yau 3-folds
    Toda, Yukinobu
    ALGEBRAIC GEOMETRY, 2022, 9 (05): : 513 - 573
  • [47] Wall-crossing formulae and strong piecewise polynomiality for mixed Grothendieck dessins d'enfant, monotone, and double simple Hurwitz numbers
    Hahn, Marvin Anas
    Kramer, Reinier
    Lewanski, Danilo
    ADVANCES IN MATHEMATICS, 2018, 336 : 38 - 69
  • [48] WSSNet: Aortic Wall Shear Stress Estimation Using Deep Learning on 4D Flow MRI
    Ferdian, Edward
    Dubowitz, David J.
    Mauger, Charlene A.
    Wang, Alan
    Young, Alistair A.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 8
  • [49] Characterization of Abnormal Wall Shear Stress Using 4D Flow MRI in Human Bicuspid Aortopathy
    van Ooij, Pim
    Potters, Wouter V.
    Collins, Jeremy
    Carr, Maria
    Carr, James
    Malaisrie, S. Chris
    Fedak, Paul W. M.
    McCarthy, Patrick M.
    Markl, Michael
    Barker, Alex J.
    ANNALS OF BIOMEDICAL ENGINEERING, 2015, 43 (06) : 1385 - 1397
  • [50] ESTIMATION OF WALL SHEAR STRESS USING 4D FLOW CARDIOVASCULAR MRI AND COMPUTATIONAL FLUID DYNAMICS
    Soudah, E.
    Casacuberta, J.
    Gamez-Montero, P. J.
    Perez, J. S.
    Rodriguez-Cancio, M.
    Raush, G.
    Li, C. H.
    Carreras, F.
    Castilla, R.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2017, 17 (03)