Discrete nonlinear Schrodinger equations with superlinear nonlinearities

被引:41
|
作者
Chen, Guanwei [1 ]
Ma, Shiwang
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete nonlinear schrodinger equations; Superlinear nonlinearities; Nontrivial solitons; Spectral gap; Spectral endpoint; GAP SOLITONS; BREATHERS; EXISTENCE; STABILITY; LATTICES; PROOF;
D O I
10.1016/j.amc.2011.11.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the discrete nonlinear equation. Lu-n - omega u(n) = sigma chi(n)g(n)(u(n)), n is an element of Z, where x belongs to a finite spectral gap of the operator L or it is a lower edge of a finite spectral gap. By using a variant generalized weak linking theorem for strongly indefinite problem developed by Schechter and Zou, we will study the existence of nontrivial solitons for this equation with g(n) is super linear. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:5496 / 5507
页数:12
相关论文
共 50 条
  • [41] Nonlinear gauge transformation for a class of Schrodinger equations containing complex nonlinearities
    Kaniadakis, G
    Scarfone, AM
    REPORTS ON MATHEMATICAL PHYSICS, 2000, 46 (1-2) : 113 - 118
  • [42] Discrete artificial boundary conditions for nonlinear Schrodinger equations
    Zisowsky, Andrea
    Ehrhardt, Matthias
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (11-12) : 1264 - 1283
  • [43] TRAVELLING WAVES OF FORCED DISCRETE NONLINEAR SCHRODINGER EQUATIONS
    Feckan, Michal
    Rothos, Vassilis M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (05): : 1129 - 1145
  • [44] Nature of transitions in augmented discrete nonlinear Schrodinger equations
    Amritkar, RE
    Kenkre, VM
    PHYSICAL REVIEW E, 1999, 59 (06): : 6306 - 6311
  • [45] An Alternative Approach to Integrable Discrete Nonlinear Schrodinger Equations
    Demontis, Francesco
    van der Mee, Cornelis
    ACTA APPLICANDAE MATHEMATICAE, 2013, 127 (01) : 169 - 191
  • [46] Gap solitons in periodic discrete nonlinear Schrodinger equations
    Pankov, A
    NONLINEARITY, 2006, 19 (01) : 27 - 40
  • [47] Compact Discrete Gradient Schemes for Nonlinear Schrodinger Equations
    Yin, Xiuling
    Zhang, Chengjian
    Zhang, Jingjing
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2017, 18 (01) : 1 - 7
  • [48] Fractional integrable and related discrete nonlinear Schrodinger equations
    Ablowitz, Mark J.
    Been, Joel B.
    Carr, Lincoln D.
    PHYSICS LETTERS A, 2022, 452
  • [49] Multiple solutions for discrete periodic nonlinear Schrodinger equations
    Sun, Jijiang
    Ma, Shiwang
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (02)
  • [50] EXISTENCE OF MULTIPLE BREATHERS FOR DISCRETE NONLINEAR SCHRODINGER EQUATIONS
    Zhou, Tao
    Liu, Xia
    Shi, Haiping
    Wen, Zongliang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,