Thermal oxidation as a simple method to increase resolution in nanoimprint lithography

被引:3
|
作者
Bonifas, Andrew P. [1 ,2 ]
McCreery, Richard L. [2 ,3 ]
Harris, Kenneth D. [2 ]
机构
[1] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
[2] Natl Res Council Canada, Natl Inst Nanotechnol, Edmonton, AB T6G 2M9, Canada
[3] Univ Alberta, Dept Chem, Edmonton, AB T6G 2R3, Canada
基金
美国国家科学基金会;
关键词
Thermal oxidation; Resolution; Master fabrication; Electron beam lithography; Nanoimprint lithography; ELECTRON-BEAM LITHOGRAPHY; GROWTH-RATE ENHANCEMENT; NM HALF-PITCH; DRY OXYGEN; IMPRINT LITHOGRAPHY; THIN REGIME; SILICON; FABRICATION; POLYSILICON; DENSITY;
D O I
10.1016/j.mee.2011.08.006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a simple thermal oxidation technique for decreasing feature sizes of nanoimprint lithography (NIL) masters. During oxidation, the dimensions of negative features are reduced (e.g., gaps become narrower), and the dimensions of positive features increase (e.g., lines become wider). We demonstrate that positive feature sizes can also be reduced after oxidation by selective etching of the oxide. We show that 74 nm gaps can be reduced to 10 nm and 226 nm lines can be narrowed to 55 nm. The reduction in feature size achieved in both positive and negative structures directly translates into increased imprint resolution, and we demonstrate improved resolution in a complete NIL pattern transfer using thermally oxidized NIL masters. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3256 / 3260
页数:5
相关论文
共 50 条
  • [21] Influence of thermal properties of polymers on NanoImprint Lithography performance
    Perret, C
    Gourgon, C
    Micouin, G
    Grolier, JPE
    MICROPROCESSES AND NANOTECHNOLOGY 2001, DIGEST OF PAPERS, 2001, : 98 - 99
  • [22] Effect of applying ultrasonic vibration in thermal nanoimprint lithography
    Harutaka Mekaru
    Toshihiko Noguchi
    Hiroshi Goto
    Masaharu Takahashi
    Microsystem Technologies, 2008, 14 : 1325 - 1333
  • [23] Development of thermosets for thermal nanoimprint lithography at decreased temperatures
    Reuther, F
    Kubenz, M
    Schuster, C
    Fink, M
    Vogler, M
    Gruetzner, G
    Grimm, J
    Kaeppel, A
    Emerging Lithographic Technologies IX, Pts 1 and 2, 2005, 5751 : 976 - 985
  • [24] Study on vibration-assisted thermal nanoimprint lithography
    Chen, Si
    Gu, Yan
    Lin, Jieqiong
    Yi, Allen
    Yi, Zhengfa
    Li, Jingpeng
    Yan, Jiaxuan
    APPLIED NANOSCIENCE, 2020, 10 (08) : 3315 - 3324
  • [25] Numerical Simulation of on Thermal Nanoimprint Lithography (NIL) Process
    Cho, Bum-Goo
    Park, Soon-Yeol
    Won, Taeyoung
    2008 IEEE SILICON NANOELECTRONICS WORKSHOP, 2008, : 169 - 170
  • [26] Influence of thermal properties of polymers on nanoimprint lithography performance
    Perret, Corinne
    Gourgon, Cécile
    Micouin, Guillaume
    Grolier, Jean Pierre
    2002, Japan Society of Applied Physics (41):
  • [27] Density variation of nanoscale patterns in thermal nanoimprint lithography
    Woo, Young Seok
    Kim, Jae Kwan
    Lee, Dong Eon
    Suh, Kahp Yang
    Lee, Woo Il
    APPLIED PHYSICS LETTERS, 2007, 91 (25)
  • [28] Effect of applying ultrasonic vibration in thermal nanoimprint lithography
    Mekaru, Harutaka
    Noguchi, Toshihiko
    Goto, Hiroshi
    Takahashi, Masaharu
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2008, 14 (9-11): : 1325 - 1333
  • [29] Strategies for hybrid techniques of UV lithography and thermal nanoimprint
    Wissen, M.
    Bogdanski, N.
    Moellenbeck, S.
    Scheer, H. -C.
    EMLC 2008: 24TH EUROPEAN MASK AND LITHOGRAPHY CONFERENCE, 2008, 6792
  • [30] Soft thermal nanoimprint lithography using a nanocomposite mold
    Viraj Bhingardive
    Liran Menahem
    Mark Schvartzman
    Nano Research, 2018, 11 : 2705 - 2714