Thermal oxidation as a simple method to increase resolution in nanoimprint lithography

被引:3
|
作者
Bonifas, Andrew P. [1 ,2 ]
McCreery, Richard L. [2 ,3 ]
Harris, Kenneth D. [2 ]
机构
[1] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
[2] Natl Res Council Canada, Natl Inst Nanotechnol, Edmonton, AB T6G 2M9, Canada
[3] Univ Alberta, Dept Chem, Edmonton, AB T6G 2R3, Canada
基金
美国国家科学基金会;
关键词
Thermal oxidation; Resolution; Master fabrication; Electron beam lithography; Nanoimprint lithography; ELECTRON-BEAM LITHOGRAPHY; GROWTH-RATE ENHANCEMENT; NM HALF-PITCH; DRY OXYGEN; IMPRINT LITHOGRAPHY; THIN REGIME; SILICON; FABRICATION; POLYSILICON; DENSITY;
D O I
10.1016/j.mee.2011.08.006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a simple thermal oxidation technique for decreasing feature sizes of nanoimprint lithography (NIL) masters. During oxidation, the dimensions of negative features are reduced (e.g., gaps become narrower), and the dimensions of positive features increase (e.g., lines become wider). We demonstrate that positive feature sizes can also be reduced after oxidation by selective etching of the oxide. We show that 74 nm gaps can be reduced to 10 nm and 226 nm lines can be narrowed to 55 nm. The reduction in feature size achieved in both positive and negative structures directly translates into increased imprint resolution, and we demonstrate improved resolution in a complete NIL pattern transfer using thermally oxidized NIL masters. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3256 / 3260
页数:5
相关论文
共 50 条
  • [1] Simple high resolution nanoimprint-lithography
    Haeffner, M.
    Heeren, A.
    Fleischer, M.
    Kern, D. P.
    Schmidt, G.
    Molenkamp, L. W.
    MICROELECTRONIC ENGINEERING, 2007, 84 (5-8) : 937 - 939
  • [2] Simple Nanoimprint Lithography with 50 nm Resolution Using Vacuum Packing
    Itoh, Kazuo
    Hirai, Hirokazu
    Ando, Tetsuya
    Takagi, Kazuya
    Noguchi, Katsuya
    SILICON SCIENCE AND ADVANCED MICRO-DEVICE ENGINEERING I, 2011, 459 : 111 - 115
  • [3] Perfluoropolyether (PFPE) Intermediate Molds for High-Resolution Thermal Nanoimprint Lithography
    Masciullo, Cecilia
    Sonato, Agnese
    Romanato, Filippo
    Cecchini, Marco
    NANOMATERIALS, 2018, 8 (08):
  • [4] Thermal nanoimprint lithography for drift correction in super-resolution fluorescence microscopy
    Youn, Yeoan
    Ishitsuka, Yuji
    Jin, Chaoyi
    Selvin, Paul R.
    OPTICS EXPRESS, 2018, 26 (02): : 1670 - 1680
  • [5] Defect analysis in thermal nanoimprint lithography
    Hirai, Y
    Yoshida, S
    Takagi, N
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (06): : 2765 - 2770
  • [6] Demolding temperature in thermal nanoimprint lithography
    Park, Sunggook
    Song, Zhichao
    Brumfield, Lance
    Amirsadeghi, Alborz
    Lee, Jaejong
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 97 (02): : 395 - 402
  • [7] Demolding temperature in thermal nanoimprint lithography
    Sunggook Park
    Zhichao Song
    Lance Brumfield
    Alborz Amirsadeghi
    Jaejong Lee
    Applied Physics A, 2009, 97 : 395 - 402
  • [8] Thermal Modeling of Ultraviolet Nanoimprint Lithography
    Patel, Bhavik C.
    Jain, Ankur
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2013, 135 (06):
  • [9] Surface engineering for resolution enhancement in nanoimprint lithography
    Jung, GY
    Wu, W
    Li, Z
    Wang, SY
    Tong, WM
    Williams, RS
    Emerging Lithographic Technologies IX, Pts 1 and 2, 2005, 5751 : 952 - 956
  • [10] Study of the behaviour of monomers in thermal nanoimprint lithography
    Gourgon, C.
    Beduer, A.
    Landis, S.
    Perret, C.
    Chaix, N.
    Gereige, I.
    MICROELECTRONIC ENGINEERING, 2010, 87 (5-8) : 1024 - 1028