Traveling wave behavior for a nonlinear reaction-diffusion equation

被引:0
|
作者
Feng, ZS [1 ]
Chen, GN
机构
[1] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78541 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
traveling waves; Fisher equation; bifurcation; proper solution; asymptotic behavior;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There is the widespread existence of wave phenomena in physics, chemistry and biology. In the present paper, we study a nonlinear reaction-diffusion equation, which can be regarded as a generalized Fisher equation. Applying the bifurcation theory of planar systems, bifurcations of bell-profile waves and kink-profile waves for the generalized Fisher equation are illustrated under certain parameter conditions. From there, a bounded traveling wave solution is obtained by means of a series of nonlinear coordinate transformations. At the end of the paper, the asymptotic behaviors of proper solutions for the generalized Fisher equation are established by applying the qualitative theory of differential equations.
引用
收藏
页码:643 / 664A
页数:22
相关论文
共 50 条
  • [31] Stabilization of a Traveling Front Solution in a Reaction-Diffusion Equation
    Kotsubinsky, K. A.
    Levashova, N. T.
    Melnikova, A. A.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2021, 76 (06) : 413 - 423
  • [32] Traveling wave solutions of density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method
    Kengne, Emmanuel
    Sayde, Michel
    Ben Hamouda, Fathi
    Lakhssassi, Ahmed
    EUROPEAN PHYSICAL JOURNAL PLUS, 2013, 128 (11):
  • [33] Traveling wave solutions of density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method
    Emmanuel Kengne
    Michel Saydé
    Fathi Ben Hamouda
    Ahmed Lakhssassi
    The European Physical Journal Plus, 128
  • [34] Traveling wave solutions for a class of reaction-diffusion system
    Bingyi Wang
    Yang Zhang
    Boundary Value Problems, 2021
  • [35] Traveling Wave Fronts of Reaction-Diffusion Systems with Delay
    Jianhong Wu
    Xingfu Zou
    Journal of Dynamics and Differential Equations, 2001, 13 (3) : 651 - 687
  • [36] Dynamical analysis on traveling wave of a reaction-diffusion model
    Zeng, Yanni
    Sun, Xianbo
    Yu, Pei
    APPLIED MATHEMATICS LETTERS, 2020, 109 (109)
  • [37] Traveling Wave Solutions in a Reaction-Diffusion Epidemic Model
    Wang, Sheng
    Liu, Wenbin
    Guo, Zhengguang
    Wang, Weiming
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [38] Traveling wave solutions for an autocatalytic reaction-diffusion model
    Mansour, M. B. A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (02) : 276 - 281
  • [39] Traveling wave solutions for a class of reaction-diffusion system
    Wang, Bingyi
    Zhang, Yang
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [40] Nonlinear delay reaction-diffusion equations: Traveling-wave solutions in elementary functions
    Polyanin, Andrei D.
    Sorokin, Vsevolod G.
    APPLIED MATHEMATICS LETTERS, 2015, 46 : 38 - 43