Traveling wave behavior for a nonlinear reaction-diffusion equation

被引:0
|
作者
Feng, ZS [1 ]
Chen, GN
机构
[1] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78541 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
traveling waves; Fisher equation; bifurcation; proper solution; asymptotic behavior;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There is the widespread existence of wave phenomena in physics, chemistry and biology. In the present paper, we study a nonlinear reaction-diffusion equation, which can be regarded as a generalized Fisher equation. Applying the bifurcation theory of planar systems, bifurcations of bell-profile waves and kink-profile waves for the generalized Fisher equation are illustrated under certain parameter conditions. From there, a bounded traveling wave solution is obtained by means of a series of nonlinear coordinate transformations. At the end of the paper, the asymptotic behaviors of proper solutions for the generalized Fisher equation are established by applying the qualitative theory of differential equations.
引用
收藏
页码:643 / 664A
页数:22
相关论文
共 50 条
  • [1] Traveling wave solutions to a reaction-diffusion equation
    Zhaosheng Feng
    Shenzhou Zheng
    David Y. Gao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 756 - 773
  • [2] Traveling wave solutions to a reaction-diffusion equation
    Feng, Zhaosheng
    Zheng, Shenzhou
    Gao, David Y.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04): : 756 - 773
  • [3] A reaction-diffusion equation and its traveling wave solutions
    Feng, Zhaosheng
    Chen, Goong
    Meng, Qingguo
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2010, 45 (06) : 634 - 639
  • [4] Traveling wave patterns in nonlinear reaction-diffusion equations
    Mansour, M. B. A.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 48 (03) : 558 - 565
  • [5] Uniqueness of traveling wave solutions for a biological reaction-diffusion equation
    Huang, WZ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (01) : 42 - 59
  • [6] On the Exact Traveling Wave Solutions of a Hyperbolic Reaction-Diffusion Equation
    Jordanov, Ivan P.
    Vitanov, Nikolay K.
    ADVANCED COMPUTING IN INDUSTRIAL MATHEMATICS (BGSIAM 2017), 2019, 793 : 199 - 210
  • [7] Nonlinear Stability of Traveling Wavefronts for Delayed Reaction-diffusion Equation with Nonlocal Diffusion
    Ma, Zhaohai
    Yuan, Rong
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (04): : 871 - 896
  • [8] On the analysis of traveling waves to a nonlinear flux limited reaction-diffusion equation
    Campos, Juan
    Guerrero, Pilar
    Sanchez, Oscar
    Soler, Juan
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (01): : 141 - 155
  • [9] Traveling wave phenomena of a nonlocal reaction-diffusion equation with degenerate nonlinearity
    Han, Bang-Sheng
    Feng, Zhaosheng
    Bo, Wei-Jian
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 103
  • [10] Existence of traveling wave solutions for a reaction-diffusion equation with distributed delays
    Peng, Yahong
    Song, Yongli
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (08) : 2415 - 2423