Output Feedback Control of the Kuramoto-Sivashinsky Equation

被引:0
|
作者
al Jamal, Rasha [1 ]
Morris, Kirsten [2 ]
机构
[1] Air Canada, Operat Excellence, Brampton, ON, Canada
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
来源
2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2015年
关键词
BOUNDARY CONTROL; NONLINEAR STABILITY; STABILIZATION; SYSTEMS; PDES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Kuramoto-Sivashinsky equation is a nonlinear partial differential equation that models reaction-diffusion systems. The stability of the equilibria depends on the value of a positive parameter; the set of all constant equilibria are unstable when the instability parameter is less than 1. Stabilization of the Kuramoto-Sivashinsky equation using scalar output-feedback control is considered in this paper. This is done by stabilizing the corresponding linearized system. A finite-dimensional controller is then designed to stabilize the system. Frechet differentiability of the semigroup generated by the closed-loop system plays an important role in proving that this approach yields a locally stable equilibrium. The approach is illustrated with a numerical example.
引用
收藏
页码:567 / 571
页数:5
相关论文
共 50 条
  • [21] Dynamical correlations for the kuramoto-sivashinsky equation
    Kobayashi, Miki U.
    Fujisaka, Hirokazu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (06): : 1043 - 1052
  • [22] Finite-dimensional feedback control of the 1-d Kuramoto-Sivashinsky equation
    Smaoui, N
    ISCCSP : 2004 FIRST INTERNATIONAL SYMPOSIUM ON CONTROL, COMMUNICATIONS AND SIGNAL PROCESSING, 2004, : 807 - 810
  • [23] Feedback control of surface roughness in sputtering processes using the stochastic Kuramoto-Sivashinsky equation
    Lou, YM
    Christofides, PD
    COMPUTERS & CHEMICAL ENGINEERING, 2005, 29 (04) : 741 - 759
  • [24] INERTIAL MANIFOLDS FOR THE KURAMOTO-SIVASHINSKY EQUATION
    FOIAS, C
    NICOLAENKO, B
    SELL, GR
    TEMAM, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (06): : 285 - 288
  • [25] New bounds for the Kuramoto-Sivashinsky equation
    Giacomelli, L
    Otto, F
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (03) : 297 - 318
  • [26] On a nonlocal analog of the Kuramoto-Sivashinsky equation
    Granero-Belinchon, Rafael
    Hunter, John K.
    NONLINEARITY, 2015, 28 (04) : 1103 - 1133
  • [27] An exact solution to the Kuramoto-Sivashinsky equation
    Abdel-Hamid, B
    PHYSICS LETTERS A, 1999, 263 (4-6) : 338 - 340
  • [28] On the Global Existence for the Kuramoto-Sivashinsky Equation
    Igor Kukavica
    David Massatt
    Journal of Dynamics and Differential Equations, 2023, 35 : 69 - 85
  • [29] ANISOTROPY EFFECT ON KURAMOTO-SIVASHINSKY EQUATION
    SHIRAISHI, K
    SAITO, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (01) : 9 - 13
  • [30] Hopping behavior in the Kuramoto-Sivashinsky equation
    Blomgren, P
    Gasner, S
    Palacios, A
    CHAOS, 2005, 15 (01)