Random Forest Based Bus Operation States Classification Using Vehicle Sensor Data

被引:0
|
作者
Yonezawa, Takuya [1 ]
Arai, Ismail [1 ]
Akiyama, Toyokazu [2 ]
Fujikawa, Kazutoshi [1 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Informat Sci, Ikoma, Japan
[2] Kyoto Sangyo Univ, Fac Comp Sci & Engn, Kyoto, Japan
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In bus companies, it is important for an operation manager to grasp operation states of vehicles from a viewpoint of safety management and improving an operation efficiency. Currently, for allowing operation managers to grasp operation states of vehicles, drivers should record operation states by manually operating a recorder called "Digital-tachograph." However, operating the digital tachograph is a heavy burden to the driver. In addition, the records may have driver's human error. In order to solve these problems and to realize efficient operation, we propose a method for automatic classification of operation states using sensor data obtained from buses. We implemented a classifier using Random Forest with the sensor data. As a results of experiments, the correct answer rate was 0.92 or more in each condition unless it was irregular operation.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Bus arrival time prediction based on Random Forest
    Jian, Li
    PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON FRONTIERS OF MANUFACTURING SCIENCE AND MEASURING TECHNOLOGY (FMSMT 2017), 2017, 130 : 867 - 872
  • [22] Classification of Keyphrases using Random Forest
    Tovar Vidal, Mireya
    Flores Petlacalco, Gerardo
    Montes Rendon, Azucena
    Contreras Gonzalez, Meliza
    Cervantes Marquez, Ana Patricia
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 506 - 511
  • [23] Classification using Probabilistic Random Forest
    Gondane, Rajhans
    Devi, V. Susheela
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 174 - 179
  • [24] Texture Classification Using Random Forest
    Razooq, Mohammed M.
    Nordin, Md Jan
    ADVANCED SCIENCE LETTERS, 2014, 20 (10-12) : 1918 - 1921
  • [25] Material Classification Using Random Forest
    Zhao, Ziming
    Li, Cuihua
    Shi, Hua
    Zou, Quan
    ADVANCED MEASUREMENT AND TEST, PTS 1-3, 2011, 301-303 : 73 - 79
  • [26] Random forest algorithm for classification of multiwavelength data
    Gao, Dan
    Zhang, Yan-Xia
    Zhao, Yong-Heng
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2009, 9 (02) : 220 - 226
  • [27] Random forest algorithm for classification of multiwavelength data
    Dan Gao1
    2 Graduate University of Chinese Academy of Sciences
    ResearchinAstronomyandAstrophysics, 2009, 9 (02) : 220 - 226
  • [28] Illuminant Classification based on Random Forest
    Liu, Bozhi
    Qiu, Guoping
    2015 14TH IAPR INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS (MVA), 2015, : 106 - 109
  • [29] Region Expansion of a Hyperspectral-Based Mineral Map Using Random Forest Classification with Multispectral Data
    Tsubomatsu, Hideki
    Tonooka, Hideyuki
    MINERALS, 2023, 13 (06)
  • [30] Differential privacy based classification model for mining medical data stream using adaptive random forest
    Fatlawi, Hayder K.
    Kiss, Attila
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2021, 13 (01) : 1 - 20