Inferring transcription factor regulatory networks from single-cell ATAC-seq data based on graph neural networks

被引:25
|
作者
Li, Hao [1 ,2 ]
Sun, Yu [1 ,2 ]
Hong, Hao [3 ,4 ]
Huang, Xin [2 ]
Tao, Huan [2 ]
Huang, Qiya [5 ,6 ]
Wang, Longteng [7 ]
Xu, Kang [1 ]
Gan, Jingbo [7 ]
Chen, Hebing [1 ,2 ]
Bo, Xiaochen [1 ,2 ]
机构
[1] Inst Hlth Serv & Transfus Med, Beijing, Peoples R China
[2] Beijing Inst Radiat Med, Beijing, Peoples R China
[3] Natl Ctr Biomed Anal, State Key Lab Prote, Beijing, Peoples R China
[4] Nanhu Lab, Jiaxing, Peoples R China
[5] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Natl Ctr Cardiovasc Dis, State Key Lab Cardiovasc Dis, Beijing, Peoples R China
[6] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Natl Ctr Cardiovasc Dis, Dept Cardiomyopathy Ctr, Beijing, Peoples R China
[7] Peking Univ, Ctr Stat Sci, Ctr Bioinformat, Sch Life Sci, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
LINK PREDICTION; INFERENCE; OMICS; DIFFERENTIATION; INTEGRATION; ACTIVATION; DYNAMICS; PROFILE; TIME;
D O I
10.1038/s42256-022-00469-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Transcription factor regulatory networks underlie major features of cellular identity and complex function such as pluripotency, development and differentiation. Li and colleagues develop a graph neural network to predict transcription factor regulatory networks based on single-cell ATAC-seq data. Sequence-specific transcription factors (TFs) are the key effectors of eukaryotic gene control and they regulate hundreds to thousands of downstream genes. Of particular interest are interactions in which a given TF regulates other TFs; these interactions define the TF regulatory networks (TRNs) that underlie cellular identity and major function. Chromatin accessibility depicts whether or not a DNA sequence is physically accessible and provides a direct measurement of transcriptional regulation. Benefiting from the accumulating chromatin accessibility data and deep learning advances, we developed a new computational method named DeepTFni to infer TRNs from the single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) data. By implementing a graph neural network, which is more suitable for network representation, DeepTFni shows outstanding performance in TRN inference, which it supports with limited numbers of cells. Furthermore, by applying DeepTFni we identified hub TFs in tissue development and tumorigenesis and revealed that many mixed-phenotype acute leukemia associated genes undergo a prominent alteration to the TRN while there is moderate difference in messenger RNA level. The DeepTFni webserver is easy to use and has provided the predicted TRNs for several popular cell lines.
引用
收藏
页码:389 / +
页数:18
相关论文
共 50 条
  • [21] simATAC: a single-cell ATAC-seq simulation framework
    Navidi, Zeinab
    Zhang, Lin
    Wang, Bo
    GENOME BIOLOGY, 2021, 22 (01)
  • [22] Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen
    Zhijian Li
    Christoph Kuppe
    Susanne Ziegler
    Mingbo Cheng
    Nazanin Kabgani
    Sylvia Menzel
    Martin Zenke
    Rafael Kramann
    Ivan G. Costa
    Nature Communications, 12
  • [23] epiAneufinder identifies copy number alterations from single-cell ATAC-seq data
    Akshaya Ramakrishnan
    Aikaterini Symeonidi
    Patrick Hanel
    Katharina T. Schmid
    Maria L. Richter
    Michael Schubert
    Maria Colomé-Tatché
    Nature Communications, 14
  • [24] Benchmarking Algorithms for Gene Set Scoring of Single-cell ATAC-seq Data
    Wang, Xi
    Lian, Qiwei
    Dong, Haoyu
    Xu, Shuo
    Su, Yaru
    Wu, Xiaohui
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2024, 22 (02)
  • [25] Benchmarking automated cell type annotation tools for single-cell ATAC-seq data
    Wang, Yuge
    Sun, Xingzhi
    Zhao, Hongyu
    FRONTIERS IN GENETICS, 2022, 13
  • [26] scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
    Li, Yunfan
    Zhang, Dan
    Yang, Mouxing
    Peng, Dezhong
    Yu, Jun
    Liu, Yu
    Lv, Jiancheng
    Chen, Lu
    Peng, Xi
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [27] Network diffusion for scalable embedding of massive single-cell ATAC-seq data
    Dong, Kangning
    Zhang, Shihua
    SCIENCE BULLETIN, 2021, 66 (22) : 2271 - 2276
  • [28] scBasset: sequence-based modeling of single-cell ATAC-seq using convolutional neural networks (vol 19, pg 1088, 2022)
    Yuan, Han
    Kelley, David R. R.
    NATURE METHODS, 2023, 20 (01) : 162 - 162
  • [29] scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
    Yunfan Li
    Dan Zhang
    Mouxing Yang
    Dezhong Peng
    Jun Yu
    Yu Liu
    Jiancheng Lv
    Lu Chen
    Xi Peng
    Nature Communications, 14
  • [30] Fundamental and practical approaches for single-cell ATAC-seq analysis
    Shi, Peiyu
    Nie, Yage
    Yang, Jiawen
    Zhang, Weixing
    Tang, Zhongjie
    Xu, Jin
    ABIOTECH, 2022, 3 (03) : 212 - 223