An unsupervised anomaly detection approach using subtractive clustering and Hidden Markov Model

被引:0
|
作者
Yang, Chun [1 ]
Deng, Feiqi [1 ]
Yang, Haidong [1 ]
机构
[1] S China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
关键词
subtractive clustering; Hidden Markov Model; feature selection; intrusion detection;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Previous Research in network intrusion detection system (NIDS) has typically used misuse detection or supervised anomaly detection techniques. These techniques have difficulty in detecting new types of attacks or causing high false positives in real network environment. Unsupervised anomaly detection can overcome the drawbacks of misuse detection and supervised anomaly detection. In this paper, normal-anomaly patterns are built over the network traffic dataset that uses subtractive clustering, and at the same time the built Hidden Markov Model (HMM) correlates the observation sequences and state transitions to predict the most probable intrusion state sequences. The proposed unsupervised anomaly detection approach is capable of reducing false positives by classifying intrusion sequences into different emergency levels. The experimental results are also reported using the KDDCup'99 dataset and Matlab.
引用
收藏
页码:123 / 126
页数:4
相关论文
共 50 条
  • [31] A Hidden Markov Model Approach for Ventricular Fibrillation Detection
    Altamira, Borja
    Alonso, Erik
    Irusta, Unai
    Aramendi, Elisabete
    Daya, Mohamud
    2018 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2018, 45
  • [32] Automated Optical Inspection Using Anomaly Detection and Unsupervised Defect Clustering
    Lehr, Jan
    Sargsyan, Alik
    Pape, Martin
    Philipps, Jan
    Krueger, Joerg
    2020 25TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2020, : 1231 - 1234
  • [33] Anomaly Detection in Public Street Lighting Data Using Unsupervised Clustering
    Ali, Mubashir
    Scandurra, Patrizia
    Moretti, Fabio
    Sherazi, Hafiz Husnain Raza
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 4524 - 4535
  • [34] Control theoretic approach to intrusion detection using a distributed hidden Markov model
    Khanna, Rahul
    Liu, Huaping
    IEEE WIRELESS COMMUNICATIONS, 2008, 15 (04) : 24 - 33
  • [35] Network anomaly detection by continuous hidden markov models: An evolutionary programming approach
    Flores, Juan J.
    Calderon, Felix
    Antolino, Anastacio
    Garcia, Juan M.
    INTELLIGENT DATA ANALYSIS, 2015, 19 (02) : 391 - 412
  • [36] Clustering sequence data using hidden Markov model representation
    Li, C
    Biswas, G
    DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS, AND TECHNOLOGY, 1999, 3695 : 14 - 21
  • [37] A new text clustering method using hidden Markov model
    Fu, Yan
    Yang, Dongqing
    Tang, Shiwei
    Wang, Tengjiao
    Gao, Aiqiang
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, PROCEEDINGS, 2007, 4592 : 73 - +
  • [38] An Unsupervised Approach for Automatic Activity Recognition Based on Hidden Markov Model Regression
    Trabelsi, Dorra
    Mohammed, Samer
    Chamroukhi, Faicel
    Oukhellou, Latifa
    Amirat, Yacine
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2013, 10 (03) : 829 - 835
  • [39] A Hidden Markov Model-Based Method for Virtual Machine Anomaly Detection
    Shi, Chaochen
    Yu, Jiangshan
    PROVABLE SECURITY, PROVSEC 2019, 2019, 11821 : 372 - 380
  • [40] Unsupervised change detection on SAR images using fuzzy hidden Markov chains
    Carincotte, C
    Derrode, S
    Bourennane, S
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (02): : 432 - 441