Temperature-driven fluid flow in porous media using a mixed finite element method and a finite volume method

被引:12
|
作者
Holstad, A [1 ]
机构
[1] Norwegian Meteorol Inst, N-0313 Oslo, Norway
关键词
D O I
10.1016/S0309-1708(01)00012-4
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
We present a numerical scheme for the computation of conservative fluid velocity, pressure and temperature fields in a porous medium. For the velocity and pressure we use the primal-dual mixed finite element method of Trujillo and Thomas while for the temperature we use a cell-centered finite volume method. The motivation for this choice of discretization is to compute accurate conservative quantities. Since the variant of the mixed finite element method we use is not commonly used, the numerical schemes are presented in detail. We sketch the computational details and present numerical experiments that justify the accuracy predicted by the theory. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:843 / 862
页数:20
相关论文
共 50 条
  • [41] Magnetohydrodynamic and Ferrohydrodynamic Fluid Flow Using the Finite Volume Method
    Chrimatopoulos, Grigorios
    Tzirtzilakis, Efstratios E.
    Xenos, Michalis A.
    FLUIDS, 2024, 9 (01)
  • [42] Multiscale Model Reduction of the Flow Problem in Fractured Porous Media Using Mixed Generalized Multiscale Finite Element Method
    Spiridonov, D.
    Vasilyeva, M.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'18), 2018, 2025
  • [43] A MIXED FINITE ELEMENT METHOD FOR DARCY FLOW IN FRACTURED POROUS MEDIA WITH NON-MATCHING GRIDS
    D'Angelo, Carlo
    Scotti, Anna
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02): : 465 - 489
  • [44] A mixed-dimensional finite volume method for two-phase flow in fractured porous media
    Reichenberger, Volker
    Jakobs, Hartmut
    Bastian, Peter
    Helmig, Rainer
    ADVANCES IN WATER RESOURCES, 2006, 29 (07) : 1020 - 1036
  • [45] Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow
    Gabriel N. Gatica
    Luis F. Gatica
    Antonio Márquez
    Numerische Mathematik, 2014, 126 : 635 - 677
  • [46] A hybrid Laplace transform mixed multiscale finite-element method for flow model in porous media
    Liu, Tangwei
    Xu, Hehua
    Qiu, Xuelin
    Zhang, Wen
    Shi, Xiaobin
    Journal of Information and Computational Science, 2013, 10 (15): : 4773 - 4781
  • [47] Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow
    Gatica, Gabriel N.
    Gatica, Luis F.
    Marquez, Antonio
    NUMERISCHE MATHEMATIK, 2014, 126 (04) : 635 - 677
  • [48] Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods
    Amaziane, Brahim
    El Ossmani, Mustapha
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (03) : 799 - 832
  • [49] A finite element approach for multiphase fluid flow in porous media
    Mroginski, Javier L.
    Ariel Di Rado, H.
    Beneyto, Pablo A.
    Awruch, Armando M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 81 (01) : 76 - 91
  • [50] The finite volume method in the context of the finite element method
    Wu, Cheng-Chieh
    Volker, Daniel
    Weisbrich, Sven
    Neitzel, Frank
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 2679 - 2683