Regularity of mean curvature flows with Neumann free boundary conditions

被引:6
|
作者
Koeller, Amos N. [1 ]
机构
[1] Univ Tubingen, Math Nat Wissensch Fak, D-72076 Tubingen, Germany
关键词
53A07; 53C44;
D O I
10.1007/s00526-011-0411-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider n-dimensional hypersurfaces flowing by the mean curvature flow with Neumann free boundary conditions supported on a smooth support surface. Under assumptions mirroring those for the case of the mean curvature flow without boundary we show that the n-dimensional Hausdorff measure of the singular set is zero.
引用
收藏
页码:265 / 309
页数:45
相关论文
共 50 条
  • [21] Curvature sensors, adaptive optics, and Neumann boundary conditions
    Ftaclas, Christ
    Kostinski, Alex
    Applied Optics, 2001, 40 (04): : 435 - 438
  • [22] Curvature sensors, adaptive optics, and Neumann boundary conditions
    Ftaclas, C
    Kostinski, A
    APPLIED OPTICS, 2001, 40 (04) : 435 - 438
  • [23] Mean Convex Mean Curvature Flow with Free Boundary
    Edelen, Nick
    Haslhofer, Robert
    Ivaki, Mohammad N.
    Zhu, Jonathan J.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2022, 75 (04) : 767 - 817
  • [24] Mean curvature type flows of graphs with nonzero Neumann boundary data in product manifold Mn x R
    Chen, Xiao-Li
    Gao, Ya
    Lu, Wei
    Mao, Jing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
  • [25] Boundary regularity of flows under perfect slip boundary conditions
    Kaplicky, Petr
    Tichy, Jakub
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (07): : 1243 - 1263
  • [26] Gradient estimates of mean curvature equations with Neumann boundary value problems
    Ma, Xinan
    Xu, Jinju
    ADVANCES IN MATHEMATICS, 2016, 290 : 1010 - 1039
  • [27] Neumann and second boundary value problems for Hessian and Gauss curvature flows
    Schnürer, OC
    Smoczyk, K
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (06): : 1043 - 1073
  • [28] ON THE RELATIONSHIP OF CONTINUITY AND BOUNDARY REGULARITY IN PRESCRIBED MEAN CURVATURE DIRICHLET PROBLEMS
    Lancaster, Kirk E.
    Melin, Jaron
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 282 (02) : 415 - 436
  • [29] BOUNDARY-REGULARITY FOR THE EVOLUTION OF SURFACES WITH PRESCRIBED MEAN-CURVATURE
    HORSINMOLINARO, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (01): : 33 - 36
  • [30] Droplets on Lubricant-Infused Surfaces: Combination of Constant Mean Curvature Interfaces with Neumann Triangle Boundary Conditions
    Gunjan, Madhu Ranjan
    Kumar, Alok
    Raj, Rishi
    LANGMUIR, 2020, 36 (11) : 2974 - 2983