Deep Neural Network based Bearing Fault Diagnosis of Induction Motor using Fast Fourier Transform Analysis

被引:0
|
作者
Pandarakone, Shrinathan Esakimuthu [1 ]
Masuko, Makoto [1 ]
Mizuno, Yukio [1 ]
Nakamura, Hisahide [2 ]
机构
[1] Nagoya Inst Technol, Dept Elect & Mech Engn, Nagoya, Aichi, Japan
[2] TOENEC Corp, Res & Dev Div, Nagoya, Aichi, Japan
关键词
Induction motor; bearing fault; scratch; spectral analysis; deep learning; convolutional neural network; ACOUSTIC-EMISSION; DEFECT;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The demand of condition monitoring of Induction Motor is progressively increasing and the fault occurring must be considered as major issue because it prevents induction motor from failing and breaking down. Considering the maintenance cost and unscheduled downtime, the bearing fault has become the significant topic and many fault detection methods have been proposed. Predominantly, pitting is considered as a faulty factor in most of the cases. This paper is motivated by considering the practical fault occurrence, introducing the scratch on the outer raceway of the bearing. An online bearing diagnosis method is proposed using a deep learning (DL) based approach. A Convolutional Neural Network (CNN) architecture is originally used for fault characterization. Specifically, fast Fourier transform analysis is carried out using the load current of the stator, followed by the feature extraction of selected frequency components which are used to train the CNN algorithm. The effectiveness of the proposed approach is verified by series of experimental tests corresponding to different bearing fault conditions. The proposed method is also tested to detect the multiple faults and the application gets extended.
引用
收藏
页码:3214 / 3221
页数:8
相关论文
共 50 条
  • [21] Bearing Fault Diagnosis of a PWM Inverter Fed-Induction Motor Using an Improved Short Time Fourier Transform
    Mohammed-El-Amine Khodja
    Ameur Fethi Aimer
    Ahmed Hamida Boudinar
    Noureddine Benouzza
    Azeddine Bendiabdellah
    Journal of Electrical Engineering & Technology, 2019, 14 : 1201 - 1210
  • [22] Bearing Fault Diagnosis of a PWM Inverter Fed-Induction Motor Using an Improved Short Time Fourier Transform
    Khodja, Mohammed-El-Amine
    Aimer, Ameur Fethi
    Boudinar, Ahmed Hamida
    Benouzza, Noureddine
    Bendiabdellah, Azeddine
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2019, 14 (03) : 1201 - 1210
  • [23] Induction motor fault diagnosis based on deep neural network of sparse auto-encoder
    Sun W.
    Shao S.
    Yan R.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2016, 52 (09): : 65 - 71
  • [24] Neural-network-based motor rolling bearing fault diagnosis
    Li, B
    Chow, MY
    Tipsuwan, Y
    Hung, JC
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000, 47 (05) : 1060 - 1069
  • [25] Advance deep convolution neural network for multiple fault diagnosis of induction motor
    Jigyasu, Rajvardhan
    Shrivastava, Vivek
    Singh, Sachin
    2022 IEEE 10TH POWER INDIA INTERNATIONAL CONFERENCE, PIICON, 2022,
  • [26] Fault Detection of Induction Motor Using Fast Fourier Transform with Feature Selection via Principal Component Analysis
    Yoo, Young-Jun
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2019, 20 (09) : 1543 - 1552
  • [27] Fault Detection of Induction Motor Using Fast Fourier Transform with Feature Selection via Principal Component Analysis
    Young-Jun Yoo
    International Journal of Precision Engineering and Manufacturing, 2019, 20 : 1543 - 1552
  • [28] Fault Diagnosis for Rolling Bearing Based on Deep Residual Neural Network
    Sun, Yi
    Gao, Hongli
    Hong, Xin
    Song, Hongliang
    Liu, Qi
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 421 - 425
  • [29] Bearing Fault Diagnosis Using Discrete Wavelet Transform And Artificial Neural Network
    Patil, Aditi B.
    Gaikwad, Jitendra A.
    Kulkarni, Jayant V.
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2016, : 399 - 405
  • [30] Detection and diagnosis of fault bearing using wavelet packet transform and neural network
    Said, Djaballah
    Kamel, Meftah
    Khaled, Khelil
    Mohsein, Tedjini
    Lakhdar, Sedira
    FRATTURA ED INTEGRITA STRUTTURALE, 2019, 13 (49): : 291 - 301