Parameterized complexity of cardinality constrained optimization problems

被引:52
|
作者
Cai, Leizhen [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
来源
COMPUTER JOURNAL | 2008年 / 51卷 / 01期
关键词
cardinality constrained optimization problem; exact algorithm; fixed-cardinality optimization problem; graph problem; parameterized complexity; FPT algorithm; W[1]-hardness;
D O I
10.1093/comjnl/bxm086
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We study the parameterized complexity of cardinality constrained optimization problems, i.e. optimization problems that require their solutions to contain specified numbers of elements to optimize solution values. For this purpose, we consider around 20 such optimization problems, as well as their parametric duals, that deal with various fundamental relations among vertices and edges in graphs. We have almost completely settled their parameterized complexity by giving either FPT algorithms or W[1]-hardness proofs. Furthermore, we obtain faster exact algorithms for several cardinality constrained optimization problems by transforming them into problems of finding maximum (minimum) weight triangles in weighted graphs.
引用
收藏
页码:102 / 121
页数:20
相关论文
共 50 条
  • [31] Cardinality constrained and multicriteria (multi)cut problems
    Bentz, C.
    Costa, M. -C.
    Derhy, N.
    Roupin, F.
    JOURNAL OF DISCRETE ALGORITHMS, 2009, 7 (01) : 102 - 111
  • [32] Exact penalization for cardinality and rank-constrained optimization problems via partial regularization
    Lu, Zhaosong
    Li, Xiaorui
    Xiang, Shuhuang
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (02): : 412 - 433
  • [33] A penalty decomposition approach for multi-objective cardinality-constrained optimization problems
    Lapucci, Matteo
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (06): : 2157 - 2189
  • [34] A Smoothing Penalty Function Algorithm for Two-Cardinality Sparse Constrained Optimization Problems
    Min, Jiang
    Meng, Zhiqing
    Zhou, Gengui
    Shen, Rui
    2018 14TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2018, : 45 - 49
  • [35] The parameterized complexity of finding secluded solutions to some classical optimization problems on graphs
    van Bevern, Rene
    Fluschnik, Till
    Mertzios, George B.
    Molter, Hendrik
    Sorge, Manuel
    Suchy, Ondrej
    DISCRETE OPTIMIZATION, 2018, 30 : 20 - 50
  • [36] On the parameterized complexity of exact satisfiability problems
    Kneis, J
    Mölle, D
    Richter, S
    Rossmanith, P
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2005, PROCEEDINGS, 2005, 3618 : 568 - 579
  • [37] Parameterized complexity of happy coloring problems
    Agrawal, Akanksha
    Aravind, N. R.
    Kalyanasundaram, Subrahmanyam
    Kare, Anjeneya Swami
    Lauri, Juho
    Misra, Neeldhara
    Reddy, I. Vinod
    THEORETICAL COMPUTER SCIENCE, 2020, 835 : 58 - 81
  • [38] Parameterized Complexity of Eulerian Deletion Problems
    Cygan, Marek
    Marx, Daniel
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Schlotter, Ildiko
    ALGORITHMICA, 2014, 68 (01) : 41 - 61
  • [39] Parameterized Complexity of Directed Spanner Problems
    Fedor V. Fomin
    Petr A. Golovach
    William Lochet
    Pranabendu Misra
    Saket Saurabh
    Roohani Sharma
    Algorithmica, 2022, 84 : 2292 - 2308
  • [40] On miniaturized problems in parameterized complexity theory
    Chen, YJ
    Flum, J
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 108 - 120