A semantic labeling framework for ALS point clouds based on discretization and CNN

被引:0
|
作者
Wang, Xingtao [1 ]
Fan, Xiaopeng [1 ]
Zhao, Debin [1 ]
机构
[1] Harbin Inst Technol, Pengcheng Labratory, Shenzhen, Peoples R China
基金
美国国家科学基金会;
关键词
ALS point clouds; Semantic labeling; Discretization; CNN; NETWORK;
D O I
10.1109/vcip49819.2020.9301759
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The airborne laser scanning (ALS) point cloud has drawn increasing attention thanks to its capability to quickly acquire large-scale and high-precision ground information. Due to the complexity of observed scenes and the irregularity of point distribution, the semantic labeling of ALS point clouds is extremely challenging. In this paper, we introduce an efficient discretization based framework according to the geometric character of ALS point clouds, and propose an original intra-class weighted cross entropy loss function to solve the problem of data imbalance. We evaluate our framework on the ISPRS (International Society for Photogrammetry and Remote Sensing) 3D Semantic Labeling dataset. The experimental results show that the proposed method has achieved a new state-of-the-art performance in terms of overall accuracy (85.3%) and average F1 score (74.1%).
引用
收藏
页码:58 / 61
页数:4
相关论文
共 50 条
  • [41] Semantic segmentation of point clouds of ancient buildings based on weak supervision
    Zhao, Jianghong
    Yu, Haiquan
    Hua, Xinnan
    Wang, Xin
    Yang, Jia
    Zhao, Jifu
    Xu, Ailin
    HERITAGE SCIENCE, 2024, 12 (01):
  • [42] An immersive labeling method for large point clouds
    Lin, Tianfang
    Yu, Zhongyuan
    McGinity, Matthew
    Gumhold, Stefan
    COMPUTERS & GRAPHICS-UK, 2024, 124
  • [43] Visualization and Labeling of Point Clouds in Virtual Reality
    Stets, Jonathan Dyssel
    Sun, Yongbin
    Corning, Wiley
    Greenwald, Scott W.
    SIGGRAPH ASIA 2017 POSTERS (SA'17), 2017,
  • [44] L-CNN: Exploiting Labeling Latency in a CNN Learning Framework
    Afridi, Muhammad Jamal
    Ross, Arun
    Shapiro, Erik M.
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2156 - 2161
  • [45] An End-to-End Geometric Characterization-aware Semantic Instance Segmentation Network for ALS Point Clouds
    Wang, Jinhong
    Yao, Wei
    MID-TERM SYMPOSIUM THE ROLE OF PHOTOGRAMMETRY FOR A SUSTAINABLE WORLD, VOL. 48-2, 2024, : 435 - 442
  • [46] Type-based outlier removal framework for point clouds
    Ge, Linlin
    Feng, Jieqing
    INFORMATION SCIENCES, 2021, 580 : 436 - 459
  • [47] Multiprototype Relational Network for Few-Shot ALS Point Cloud Semantic Segmentation by Transferring Knowledge From Photogrammetric Point Clouds
    Dai, Mofan
    Xing, Shuai
    Xu, Qing
    Li, Pengcheng
    Pan, Jiechen
    Zhang, Guoping
    Wang, Hanyun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [48] Semantic Segmentation of a Point Clouds of an Urban Scenes
    Dashkevich, Andrey
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT SYSTEMS (COLINS-2019), VOL I: MAIN CONFERENCE, 2019, 2362 : 208 - 217
  • [49] Domain knowledge-enhanced region growing framework for semantic segmentation of bridge point clouds
    Yang, Tao
    Zou, Yang
    Yang, Xiaofei
    Castillo, Enrique del Rey
    AUTOMATION IN CONSTRUCTION, 2024, 165
  • [50] A New Framework for Registration of Semantic Point Clouds from Stereo and RGB-D Cameras
    Zhang, Ray
    Lin, Tzu-Yuan
    Lin, Chien Erh
    Parkison, Steven A.
    Clark, William
    Grizzle, Jessy W.
    Eustice, Ryan M.
    Ghaffari, Maani
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 12214 - 12221