An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy

被引:28
|
作者
Ali, Muhammad [1 ]
Son, Dae-Hee [1 ]
Kang, Sang-Hee [1 ]
Nam, Soon-Ryul [1 ]
机构
[1] Myongji Univ, Dept Elect Engn, Yongin 449728, South Korea
关键词
current transformer (CT) saturation; deep neural networks (DNNs); autoencoder; classification; deep learning (DL); unsupervised feature extraction; supervised fine-tuning strategy; PROTECTION SCHEME; TRANSFORMERS; ALGORITHM;
D O I
10.3390/en10111830
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Current transformer (CT) saturation is one of the significant problems for protection engineers. If CT saturation is not tackled properly, it can cause a disastrous effect on the stability of the power system, and may even create a complete blackout. To cope with CT saturation properly, an accurate detection or classification should be preceded. Recently, deep learning (DL) methods have brought a subversive revolution in the field of artificial intelligence (AI). This paper presents a new DL classification method based on unsupervised feature extraction and supervised fine-tuning strategy to classify the saturated and unsaturated regions in case of CT saturation. In other words, if protection system is subjected to a CT saturation, proposed method will correctly classify the different levels of saturation with a high accuracy. Traditional AI methods are mostly based on supervised learning and rely heavily on human crafted features. This paper contributes to an unsupervised feature extraction, using autoencoders and deep neural networks (DNNs) to extract features automatically without prior knowledge of optimal features. To validate the effectiveness of proposed method, a variety of simulation tests are conducted, and classification results are analyzed using standard classification metrics. Simulation results confirm that proposed method classifies the different levels of CT saturation with a remarkable accuracy and has unique feature extraction capabilities. Lastly, we provided a potential future research direction to conclude this paper.
引用
收藏
页数:24
相关论文
共 50 条
  • [11] A general approach for improving deep learning-based medical relation extraction using a pre-trained model and fine-tuning
    Chen, Tao
    Wu, Mingfen
    Li, Hexi
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2019,
  • [12] Gemstone classification using ConvNet with transfer learning and fine-tuning
    Freire, Willian M.
    Amaral, Aline M. M. M.
    Costa, Yandre M. G.
    2022 29TH INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP), 2022,
  • [13] Deep learning-based weld defect classification using VGG16 transfer learning adaptive fine-tuning
    Kumaresan, Samuel
    Aultrin, K. S. Jai
    Kumar, S. S.
    Anand, M. Dev
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2023, 17 (06): : 2999 - 3010
  • [14] Deep learning-based weld defect classification using VGG16 transfer learning adaptive fine-tuning
    Samuel Kumaresan
    K. S. Jai Aultrin
    S. S. Kumar
    M. Dev Anand
    International Journal on Interactive Design and Manufacturing (IJIDeM), 2023, 17 : 2999 - 3010
  • [15] A Deep Transfer Learning Approach to Fine-Tuning Facial Recognition Models
    Luttrell, Joseph
    Zhou, Zhaoxian
    Zhang, Yuanyuan.
    Zhang, Chaoyang
    Gong, Ping
    Yang, Bei
    Li, Runzhi
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 2671 - 2676
  • [16] Recognition of Conus species using a combined approach of supervised learning and deep learning-based feature extraction
    Qasmi, Noshaba
    Bibi, Rimsha
    Rashid, Sajid
    PLOS ONE, 2024, 19 (12):
  • [17] HEp-2 Intensity Classification based on Deep Fine-tuning
    Taormina, Vincenzo
    Cascio, Donato
    Abbene, Leonardo
    Raso, Giuseppe
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 2: BIOIMAGING, 2020, : 143 - 149
  • [18] Road-Type Classification through Deep Learning Networks Fine-Tuning
    Saleh, Yaser
    Otoum, Nesreen
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2020, 19 (01)
  • [19] A statistical learning based approach for parameter fine-tuning of metaheuristics
    Calvet, Laura
    Juan, Angel A.
    Serrat, Caries
    Ries, Jana
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2016, 40 (01) : 201 - 223
  • [20] High Accuracy Arrhythmia Classification using Transfer Learning with Fine-Tuning
    Aphale, Sayli
    Jha, Anshul
    John, Eugene
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 480 - 487