Balanced configurations of 2n+1 plane vectors

被引:0
|
作者
Ressayre, N [1 ]
机构
[1] Univ Montpellier 2, Dept Math, F-34095 Montpellier, France
关键词
D O I
10.1007/s10801-005-6912-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The balanced configurations of 2n + 1 plane vectors are presented. Balanced plane configurations with at most six vectors have been classified. A plane configuration is said to be uniform if every pair of vectors is linearly independent. A balanced configuration {v1,...,vm} is said to be uniform if for any pair i ≠ j, the vectors Vi, v j are linearly independent.
引用
收藏
页码:281 / 287
页数:7
相关论文
共 50 条
  • [31] Fast Sign Detection for RNS (2n-1, 2n, 2n+1)
    Tomczak, Tadeusz
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (06) : 1502 - 1511
  • [32] High Speed Comparator for the Moduli {2n, 2n-1, 2n+1}
    Li, Lei
    Li, Guodong
    Zhao, Yingxu
    Yin, Pengsheng
    Zhou, Wanting
    IEICE ELECTRONICS EXPRESS, 2013, 10 (21):
  • [33] On the occurrence of 2n+1 and other chromosomal mutants
    Belling, J
    NATURE, 1926, 117 : 693 - 693
  • [34] Some rapidly converging series for ζ(2n+1)
    Srivastava, HM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) : 385 - 396
  • [35] Improved modulo (2n+1) multiplier for IDEA
    Chen, Yi-Jung
    Duh, Dyi-Rong
    Han, Yunghsiang Sam
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2007, 23 (03) : 907 - 919
  • [36] SOME SERIES REPRESENTATIONS OF ZETA(2N+1)
    YUE, ZN
    WILLIAMS, KS
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (04) : 1581 - 1592
  • [37] Stability of gamma factors for SO(2n+1)
    Cogdell, JW
    Piatetski-Shapiro, II
    MANUSCRIPTA MATHEMATICA, 1998, 95 (04) : 437 - 461
  • [38] SO(2N+1) IN AN [SU(2)]N BASIS - SYMMETRIC REPRESENTATIONS
    DEMEYER, H
    VANDENBERGHE, G
    DEWILDE, P
    LECTURE NOTES IN PHYSICS, 1983, 180 : 448 - 449
  • [39] GEOMETRIC REPRESENTATION OF SEQUENCES OF COMPLEXITY 2N+1
    ARNOUX, P
    RAUZY, G
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02): : 199 - 215
  • [40] ON SURFACES OF DEGREE AT MOST 2N+1 IN PN
    BUIUM, A
    LECTURE NOTES IN MATHEMATICS, 1984, 1056 : 47 - 67