Multivariate statistical analysis of non-mass-selected ToF-SIMS data

被引:12
|
作者
Smentkowski, V. S. [1 ]
Ostrowski, S. G. [1 ]
Kollmer, F. [2 ]
Schnieders, A. [3 ]
Keenan, M. R. [4 ]
Ohlhausen, J. A. [4 ]
Kotula, P. G. [4 ]
机构
[1] Global Res, Gen Elect, Niskayuna, NY 12309 USA
[2] ION TOF GmbH, Munster, Germany
[3] TASCON USA Inc, Chestnut Ridge, NY 10977 USA
[4] Sandia Natl Labs, Albuquerque, NM 87185 USA
关键词
ToF-SIMS; multivariate statistical analysis; chemometrics; LMIG; cluster;
D O I
10.1002/sia.2862
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cluster LMIGs are now regarded as the standard primary ion guns on time-of-flight secondary ion mass spectrometers (ToF-SIMS). The ToF-SIMS analyst typically selects a bombarding species (cluster size and charge) to be used for material analysis. Using standard data collection protocols where the analyst uses only a single primary bombarding species, only a fraction of the ion-beam current generated by the LMIG is used. In this work, we demonstrate for the first time that it is possible to perform ToF-SIMS analysis when all of the primary ion intensity (clusters) are used; we refer to this new data analysis mode as non-mass-selected (NMS) analysis. Since each of the bombarding species has a different mass-to-charge ratio, they strike the sample at different times, and as a result, each of the bombarding species generates a spectrum. The resulting NMS ToF-SIMS spectrum contains contributions from each of the bombarding species that are shifted in time. NMS spectra are incredibly complicated and would be difficult, if not impossible, to analyze using univariate methodology. We will demonstrate that automated multivariate statistical analysis (MVSA) tools are capable of rapidly converting the complicated NMS data sets into a handful of chemical components (represented by both spectra and images) that are easier to interpret since each component spectrum represents a unique and simpler chemistry. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:1176 / 1182
页数:7
相关论文
共 50 条
  • [1] Multivariate analysis of ToF-SIMS data for biological applications
    Park, Ji-Won
    Min, Hyegeun
    Kim, Young-Pil
    Shon, Hyun Kyong
    Kim, Jinmo
    Moon, Dae Won
    Lee, Tae Geol
    SURFACE AND INTERFACE ANALYSIS, 2009, 41 (08) : 694 - 703
  • [2] Multivariate analysis of ToF-SIMS data using mass segmented peak lists
    Madiona, Robert M. T.
    Welch, Nicholas G.
    Russell, Stephanie B.
    Winkler, David A.
    Scoble, Judith A.
    Muir, Benjamin W.
    Pigram, Paul J.
    SURFACE AND INTERFACE ANALYSIS, 2018, 50 (07) : 713 - 728
  • [3] A comparison of multivariate statistical analysis protocols for ToF-SIMS spectral images
    Smentkowski, V. S.
    Ostrowski, S. G.
    Keenan, M. R.
    SURFACE AND INTERFACE ANALYSIS, 2009, 41 (02) : 88 - 96
  • [4] Multivariate statistical analysis of three-spatial-dimension TOF-SIMS raw data sets
    Smentkowski, V. S.
    Ostrowski, S. G.
    Braunstein, E.
    Keenan, M. R.
    Ohlhausen, J. A. Tony
    Kotula, P. G.
    ANALYTICAL CHEMISTRY, 2007, 79 (20) : 7719 - 7726
  • [5] Characterisation of wood growth regions by multivariate analysis of ToF-SIMS data
    Trindade, Gustavo F.
    Banuls-Ciscar, Jorge
    Ezeh, Clive K.
    Abel, Marie-Laure
    Watts, John F.
    SURFACE AND INTERFACE ANALYSIS, 2016, 48 (07) : 584 - 588
  • [6] Effect of mass segment size on polymer ToF-SIMS multivariate analysis using a universal data matrix
    Madiona, Robert M. T.
    Winkler, David A.
    Muir, Benjamin W.
    Pigram, Paul J.
    APPLIED SURFACE SCIENCE, 2019, 478 : 465 - 477
  • [7] simsMVA: A tool for multivariate analysis of ToF-SIMS datasets
    Trindade, Gustavo F.
    Abel, Marie-Laure
    Watts, John F.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 182 : 180 - 187
  • [8] Optimal scaling of TOF-SIMS spectrum-images prior to multivariate statistical analysis
    Keenan, MR
    Kotula, PG
    APPLIED SURFACE SCIENCE, 2004, 231 : 240 - 244
  • [9] Distinguishing monosaccharide stereo- and structural isomers with TOF-SIMS and multivariate statistical analysis
    Berman, Elena S. F.
    Kulp, Kristen S.
    Knize, Mark G.
    Wu, Ligang
    Nelson, Erik J.
    Nelson, David O.
    Wu, Kuang Jen
    ANALYTICAL CHEMISTRY, 2006, 78 (18) : 6497 - 6503
  • [10] ToF-SIMS data analysis for complex plant tissue samples using multivariate analysis and G-SIMS
    Aoyagi, Satoka
    Kodani, Noriko
    Yano, Akira
    Asao, Toshiki
    Iwai, Hideo
    Kudo, Masahiro
    SURFACE AND INTERFACE ANALYSIS, 2014, 46 : 131 - 135